You are looking for information, articles, knowledge about the topic nail salons open on sunday near me 수리 통계학 pdf on Google, you do not find the information you need! Here are the best content compiled and compiled by the https://toplist.Experience-Porthcawl.com team, along with other related topics such as: 수리 통계학 pdf 수리통계학 김우철 pdf, 수리통계학 강의, 수리통계학 강의노트, 수리통계학 10판 pdf, 서울대 수리통계학, 통계학 입문 pdf, 통계학개론 pdf, 확률론 PDF
확률론, 수리통계학 pdf 교재 : 네이버 블로그
- Article author: m.blog.naver.com
- Reviews from users: 8672 Ratings
- Top rated: 4.2
- Lowest rated: 1
- Summary of article content: Articles about 확률론, 수리통계학 pdf 교재 : 네이버 블로그 확률론, 수리통계학 pdf 교재 … PDF files can be viewed with the free program Adobe Acrobat Reader . Preface and Table of Contents Lectures … …
- Most searched keywords: Whether you are looking for 확률론, 수리통계학 pdf 교재 : 네이버 블로그 확률론, 수리통계학 pdf 교재 … PDF files can be viewed with the free program Adobe Acrobat Reader . Preface and Table of Contents Lectures …
- Table of Contents:
카테고리 이동
SIB
이 블로그
자유
카테고리 글
카테고리
이 블로그
자유
카테고리 글
모두를 위한 열린강좌 KOCW
- Article author: www.kocw.net
- Reviews from users: 5514 Ratings
- Top rated: 4.2
- Lowest rated: 1
- Summary of article content: Articles about 모두를 위한 열린강좌 KOCW 차시별 강의 ; 1. · 1.1 서론 ~ 1.3 확률집합함수 ; 2. · 1.3 확률집합함수 ~ 1.4 조건부 확률과 확률적 독립성 ; 3. · 1.5 확률변수 ~ 1.6 이산형 확률변수 ; 4. · 1.7 연속형 … …
- Most searched keywords: Whether you are looking for 모두를 위한 열린강좌 KOCW 차시별 강의 ; 1. · 1.1 서론 ~ 1.3 확률집합함수 ; 2. · 1.3 확률집합함수 ~ 1.4 조건부 확률과 확률적 독립성 ; 3. · 1.5 확률변수 ~ 1.6 이산형 확률변수 ; 4. · 1.7 연속형 …
- Table of Contents:
수리통계학1 – 전남대학교 | KOCW 공개 강의
- Article author: www.kocw.net
- Reviews from users: 22855 Ratings
- Top rated: 4.4
- Lowest rated: 1
- Summary of article content: Articles about 수리통계학1 – 전남대학교 | KOCW 공개 강의 기본적인 확률이론과 통계적 추론 학습에 필요한 확률 분포 이론 등 수리적 이론을 공부하여 여러 가지 통계적 자료 분석 방법론을 이해할 수 있는 기본적 능력의 함양. …
- Most searched keywords: Whether you are looking for 수리통계학1 – 전남대학교 | KOCW 공개 강의 기본적인 확률이론과 통계적 추론 학습에 필요한 확률 분포 이론 등 수리적 이론을 공부하여 여러 가지 통계적 자료 분석 방법론을 이해할 수 있는 기본적 능력의 함양. 전남대학교. 백장선. 기본적인 확률이론과 통계적 추론 학습에 필요한 확률 분포 이론 등 수리적 이론을 공부하여 여러 가지 통계적 자료 분석 방법론을 이해할 수 있는 기본적 능력의 함양수리통계학1
- Table of Contents:
바로가기
주메뉴
Lecture
- Article author: crkim.pusan.ac.kr
- Reviews from users: 45783 Ratings
- Top rated: 4.1
- Lowest rated: 1
- Summary of article content: Articles about Lecture 수리통계학(I) 20년 1학기 강의노트. 첨부파일. 수리통계학(1)_20년1학기.pdf 미리보기. 바로가기. 개인정보처리방침 · 저작권보호정책 … …
- Most searched keywords: Whether you are looking for Lecture 수리통계학(I) 20년 1학기 강의노트. 첨부파일. 수리통계학(1)_20년1학기.pdf 미리보기. 바로가기. 개인정보처리방침 · 저작권보호정책 …
- Table of Contents:
Lecture
Lecture
수리통계학(I) 20년 1학기 강의노트
Lecture
- Article author: www.coursehero.com
- Reviews from users: 35435 Ratings
- Top rated: 4.1
- Lowest rated: 1
- Summary of article content: Articles about Lecture 수리통계학-목차-교재.pdf – 수리통계학 교재 목차 제 1 장 확률이론 1강 2강 3강 표본공간과 사상 p.1 경우의 수,순열,조합 p.4 확률의 공리적정의,확률의 기본정리 … …
- Most searched keywords: Whether you are looking for Lecture 수리통계학-목차-교재.pdf – 수리통계학 교재 목차 제 1 장 확률이론 1강 2강 3강 표본공간과 사상 p.1 경우의 수,순열,조합 p.4 확률의 공리적정의,확률의 기본정리 …
- Table of Contents:
Lecture
Lecture
수리통계학(I) 20년 1학기 강의노트
수리통계학 강의노트 (12-1 중간)
- Article author: web.yonsei.ac.kr
- Reviews from users: 24687 Ratings
- Top rated: 3.2
- Lowest rated: 1
- Summary of article content: Articles about 수리통계학 강의노트 (12-1 중간) 수리통계학 강의노트 (12-1 중간), 2948. 나성룡. 첨부파일1 : 수통게시(12-1중간).pdf. 작성일 : 2012.04.24, 수정일 : 2012.04.24. …
- Most searched keywords: Whether you are looking for 수리통계학 강의노트 (12-1 중간) 수리통계학 강의노트 (12-1 중간), 2948. 나성룡. 첨부파일1 : 수통게시(12-1중간).pdf. 작성일 : 2012.04.24, 수정일 : 2012.04.24.
- Table of Contents:
강의 자료실 – 12.2(수) 수리통계학 모의고사 8,9회분입니다. | 군사과
- Article author: www.kookje.ac.kr
- Reviews from users: 28651 Ratings
- Top rated: 4.1
- Lowest rated: 1
- Summary of article content: Articles about 강의 자료실 – 12.2(수) 수리통계학 모의고사 8,9회분입니다. | 군사과 12.2(수) 수리통계학 모의고사 8,9회분입니다. 조회 619. 권택헌. 첨부파일. pdf 파일 8회 – 온라인.pdf (290.21 KB) · pdf 파일 9회 – 온라인.pdf (255.28 KB). …
- Most searched keywords: Whether you are looking for 강의 자료실 – 12.2(수) 수리통계학 모의고사 8,9회분입니다. | 군사과 12.2(수) 수리통계학 모의고사 8,9회분입니다. 조회 619. 권택헌. 첨부파일. pdf 파일 8회 – 온라인.pdf (290.21 KB) · pdf 파일 9회 – 온라인.pdf (255.28 KB). 국제대학교 군사학과 : 육, 해, 공군 부사관, 3사관학교, 특전사, UDT, 장교, 부사관국제대학교 군사학과 : 육, 해, 공군 부사관, 3사관학교, 특전사, UDT, 장교, 부사관
- Table of Contents:
군사과 주메뉴
All menu
강의 자료실
Access to this page has been denied.
- Article author: www.studocu.com
- Reviews from users: 24019 Ratings
- Top rated: 4.6
- Lowest rated: 1
- Summary of article content: Articles about Access to this page has been denied. 수리통계학 솔루션 solutions manual probability and statistical inference ninth edition robert hogg university of iowa elliot tanis hope college dale … …
- Most searched keywords: Whether you are looking for Access to this page has been denied. 수리통계학 솔루션 solutions manual probability and statistical inference ninth edition robert hogg university of iowa elliot tanis hope college dale …
- Table of Contents:
수리통계학2 중간 ~07W – kaun99 | 플립 PDF 온라인 | FlipHTML5
- Article author: fliphtml5.com
- Reviews from users: 20591 Ratings
- Top rated: 4.0
- Lowest rated: 1
- Summary of article content: Articles about 수리통계학2 중간 ~07W – kaun99 | 플립 PDF 온라인 | FlipHTML5 수리통계학2 중간 ~07W을 찾고 계십니까? 저자 kaun99 의 모든 플립 PDF를 확인하십시오. 수리통계학2 중간 ~07W이 마음에 드십니까? 수리통계학2 중간 ~07W을 무료로 … …
- Most searched keywords: Whether you are looking for 수리통계학2 중간 ~07W – kaun99 | 플립 PDF 온라인 | FlipHTML5 수리통계학2 중간 ~07W을 찾고 계십니까? 저자 kaun99 의 모든 플립 PDF를 확인하십시오. 수리통계학2 중간 ~07W이 마음에 드십니까? 수리통계학2 중간 ~07W을 무료로 … 수리통계학2 중간 ~07W을 찾고 계십니까? 저자 kaun99 의 모든 플립 PDF를 확인하십시오. 수리통계학2 중간 ~07W이 마음에 드십니까? 수리통계학2 중간 ~07W을 무료로 공유하고 다운로드하세요. FlipHTML5에 PDF를 업로드하고 수리통계학2 중간 ~07W과 같은 플립 PDF를 만듭니다.
- Table of Contents:
See more articles in the same category here: Top 74 tips update new.
INSTRUCTOR’S SOLUTIONS MANUAL PROBABILITY AND STATISTICAL INFERENCE
INSTRUCTOR’S
SOLUTIONS MANUAL
PROBABILITY AND
STATISTICAL INFERENCE
NINTH EDITION
*/2%$/(‘,7,
ROBERT V. HOGG
University of Iowa
Elliot A. Tanis
Hope College
Dale L. Zimmerman
University of Iowa
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
Copyright © 2016 Pearson Education Limited
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.
ISBN-13: ISBN-10:
iv Contents
6 Point Estimation 6 Descriptive Statistics 6 Exploratory Data Analysis 6 Order Statistics 6 Maximum Likelihood Estimation 6 A Simple Regression Problem Likelihood Estimators 6 Asymptotic Distributions of Maximum 6 Sufficient Statistics 6 Bayesian Estimation 6 More Bayesian Concepts
7 Interval Estimation 7 Confidence Intervals for Means 7 Confidence Intervals for the Difference of Two Means 7 Confidence Intervals For Proportions 7 Sample Size 7 Distribution-Free Confidence Intervals for Percentiles 7 More Regression 7 Resampling Methods
8 Tests of Statistical Hypotheses 8 Tests About One Mean 8 Tests of the Equality of Two Means 8 Tests about Proportions 8 The Wilcoxon Tests 8 Power of a Statistical Test 8 Best Critical Regions 8 Likelihood Ratio Tests
9 More Tests 9 Chi-Square Goodness-of-Fit Tests 9 Contingency Tables 9 One-Factor Analysis of Variance 9 Two-Way Analysis of Variance 9 General Factorial and 2kFactorial Designs 9 Tests Concerning Regression and Correlation 9 Statistical Quality Control
Preface v
Preface
4HISÅ SOLUTIONSÅ MANUALÅ PROVIDESÅ ANSWERSÅ FORÅ THEÅ EVEN
NUMBEREDÅ EXERCISESÅ INÅ 0ROBABILITYÅ ANDÅ
3TATISTICALÅ)NFERENCE ÅTHÅEDITIONÅ’LOBALÅEDITIONÅBYÅ2OBERTÅ6Å(OGGÅ%LLIOTÅ!Å4ANISÅANDÅ$ALEÅ,Å
:IMMERMANÅ #OMPLETEÅ SOLUTIONSÅ AREÅ GIVENÅ FORÅ MOSTÅ OFÅ THESEÅ EXERCISESÅ 9OUÅ THEÅ INSTRUCTORÅ MAYÅ
DECIDEÅHOWÅMANYÅOFÅTHESEÅSOLUTIONSÅANDÅANSWERSÅYOUÅWANTÅTOÅMAKEÅAVAILABLEÅTOÅYOURÅSTUDENTSÅ.OTEÅ
THATÅTHEÅANSWERSÅFORÅTHEÅODD
NUMBEREDÅEXERCISESÅAREÅGIVENÅINÅTHEÅTEXTBOOK
All of the figures in this manual were generated usingMaple, a computer algebra system. Most of the figures were generated and many of the solutions, especially those involving data, were solved using procedures that were written by Zaven Karian from Denison University. We thank him for providing these. These procedures are available free of charge for your use. They are available for down load at math.hope/tanis/. Short descriptions of these procedures are pro- vided on the “Maple Card.” Complete descriptions of these procedures are given inProbability and Statistics: Explorations with MAPLE, second edition, 1999, written by Zaven Karian and Elliot Ta- nis, published by Prentice Hall (ISBN 0-13-021536-8). You can download a copy of this manual at math.hope/tanis/MapleManual.pdf. Our hope is that this solutions manual will be helpful to eachof you in your teaching. If you find an error or wish to make a suggestion, send these to Elliot Tanis,tanis@hope, and he will post corrections on his web page, math.hope/tanis/.
R.V. E.A. D.L.
Chapter 1 Probability 1
Chapter 1
Probability
1 Properties of Probability
1-
1-4 (a)
(b) (i) /, (ii) 0, (iii) /, (iv) /, (v) /, (vi) /, (vii) /. 1-6 (a) P (A ∪ B) = 0. 4 + 0. 5 − 0. 3 = 0 .6; (b) A = ( A∩B∀)∪(A∩B) P(A) = P(A∩B∀) + P(A∩B) 0. 4 = P(A∩B∀) + 0. 3 P(A∩B∀) = 0 .1;
(c)P(A∀∪B∀) = P[(A∩B)∀] = 1 −P(A∩B) = 1 − 0 .3 = 0 .7.
1-8 LetA={lab work done},B={referral to a specialist}, P(A) = 0. 41 , P (B) = 0. 53 , P ([A∪B]∀) = 0 .21. P(A∪B) = P(A) + P(B)−P(A∩B) 0. 79 = 0 + 0. 53 −P(A∩B) P(A∩B) = 0 .41 + 0. 53 − 0 .79 = 0. 15.
1-10 A∪B∪C = A∪(B∪C) P(A∪B∪C) = P(A) + P(B∪C)−P[A∩(B∪C)] = P(A) + P(B) + P(C)−P(B∩C)−P[(A∩B)∪(A∩C)] = P(A) + P(B) + P(C)−P(B∩C)−P(A∩B)−P(A∩C) + P (A ∩ B ∩ C).
1-12 (a) /; (b) /; (c) 0; (d) /.
0ROBABILITYÅOFÅINSURINGÅEXACTLYÅÅCARÅ 0 ! ÅÅÅ
0ROBABILITYÅOFÅINSURINGÅMOREÅTHANÅÅCARÅ 0 ” ÅÅÅ
0ROBABILITYÅOFÅINSURINGÅAÅSPORTSÅCARÅ 0 # ÅÅÅ
# 0 _!_ c
0″ 0! # 0″ # 0 0 _!_ #
#
2 Section 1 Methods of Enumeration
1-14P(A) = 2[r−r(
√
3 /2)]
2 r
= 1 −
√
3
2
.
1-16Note that the respective probabilities arep 0 , p 1 =p 0 / 4 , p 2 =p 0 / 42 ,···. ∀∞
k=
p 0 4 k
= 1
p 0 1 − 1 / 4
= 1
p 0 = 3 4 1 −p 0 −p 1 = 1 −
15
16 =
1
16.
1 Methods of Enumeration
1-2 (a) .UMBERÅ OFÅ EXPERIEMENTSÅ Å ÅÑÅÅÑÅ ÅÅ
1-4 (a) 4
6
3
= 80;
(b)4(2 6 ) = 256;
(c) (4−1 + 3)! (4−1)!3!
= 20.
1-6S={DDD, DDFD, DFDD, FDDD, DDFFD, DFDFD, FDDFD, DFFDD,
FDFDD, FFDDD, FFF, FFDF, FDFF, DFFF FFDDF, FDFDF,
1-
1-
− 1
r
+
n− 1 r− 1
=
(n−1)! r!(n− 1 −r)!
+
(n−1)! (r−1)!(n−r)!
=
(n−r)(n−1)! +r(n−1)! r!(n−r)! =
n! r!(n−r)!=
n r
.
1-12 0 = (1 −1)n=
∀n
r=
n r
(−1)r(1)n−r=
∀n
r=
(−1)r
n r
.
2 n = (1 + 1) n=
∀n
r=
n r
(1)r(1)n−r=
∀n
r=
n r
.
1-
10 −1 + 36
36
=
45!
36!9!
= 886, 163 ,135.
1-16 (a)
19
3
52 − 19
6
52
9
= 102 , 486
351 , 325 = 0 .2917;
(b)
19
3
10
2
7
1
3
0
5
1
2
0
6
2
52
= 7 , 695
1 , 236 , 664 = 0. 00622.
9
(b)
n
DFFDF, FDDFF, DFDFF, DDFFF } so there are 20 possibilities.
Total number of varieties of pizzas = 4 u 3 u (2) 16 = 786432.
Number o f experiments with each factor at 4 levels = ( 4 ) u (4) u ( 4 ) = 64.
4 Section 1 Independent Events
1-
1 Independent Events
1-2 (a) P(A∩B) = P(A)P(B) = (0 .3)(0) = 0; P(A∪B) = P(A) + P(B)−P(A∩B) = 0 .3 + 0. 6 − 0. 18 = 0. 72.
(b)P(A|B) =
P(A∩B)
P(B) =
0
0. 6 = 0.
1-4Proof of(b): P(A∀∩B) = P(B)P(A∀|B) = P(B)[1−P(A|B)] = P(B)[1−P(A)] = P(B)P(A∀).
Proof of(c): P(A∀∩B∀) = P[(A∪B)∀] = 1 −P(A∪B) = 1−P(A)−P(B) + P(A∩B) = 1 −P(A)−P(B) + P(A)P(B) = [1 −P(A)][1−P(B)] = P(A∀)P(B∀).
1-6 P[A∩(B∩C)] = P[A∩B∩C] = P(A)P(B)P(C) = P(A)P(B∩C). P[A∩(B∪C)] = P[(A∩B)∪(A∩C)] = P(A∩B) + P(A∩C)−P(A∩B∩C) = P(A)P(B) + P(A)P(C)−P(A)P(B)P(C) = P(A)[P(B) + P(C)−P(B∩C)] = P(A)P(B∪C). P[A∀∩(B∩C∀)] = P(A∀∩C∀∩B) = P(B)[P(A∀∩C∀)|B] = P(B)[1−P(A∪C|B)] = P(B)[1−P(A∪C)] = P(B)P[(A∪C)∀] = P(B)P(A∀∩C∀) = P(B)P(A∀)P(C∀) = P(A∀)P(B)P(C∀) = P(A∀)P(B∩C∀) P[A∀∩B∀∩C∀] = P[(A∪B∪C)∀] = 1 −P(A∪B∪C) = 1 −P(A)−P(B)−P(C) + P(A)P(B) + P(A)P(C)+ P(B)P(C)−P A )P(B)P(C) = [1 −P(A)][1−P(B)][1−P(C)] = P(A∀)P(B∀)P(C∀).
Probability that an employee has a college degree and works in sales = 0. 6 u 0 = 0. 0 6. Probability that an employee does not have a college degree and works in sales = 0 u (1 ñ 0) = 0. Probability that an employee chosen at random works in sales = 0 + 0 = 0.
(d)P(A 1 |B 2 ) = 11 /41; (e)P(B 1 |A 3 ) = 13 /29.
Chapter 1 Probability 5
1-10 (a) 3 4
· 3
4
= 9
16
;
(b) 1 4
· 3
4
+ 3
4
· 2
4
= 9
16
;
(c)
2
4 ·
1
4 +
2
4 ·
4
4 =
10
16.
1-12 (a)
(b)
(c)
(d)
1-14 (a) 1 −(0) 3 = 1 − 0 .064 = 0; (b) 1 −(0) 8 = 1 − 0 .00065536 = 0.
1-16 (a)
∀∞
k=
1
5
4
5
2 k = 5 9
;
(b) 1 5
+ 4
5
· 3
4
· 1
3
+ 4
5
· 3
4
· 2
3
· 1
2
· 1
1
= 3
5
.
1-18 (a)7;(b)(1/2) 7 ;(c)63;(d)No! (1/2) 63 = 1 / 9 , 223 , 372 , 036 , 854 , 775 ,808.
1-20No.
1 Bayes’ Theorem
1-2 (a)
(b)
1-4 Let eventBdenote an accident and letA 1 be the event that age of the driver is 16–25. Then
P(A 1 |B) =
(0)(0)
(0)(0) + (0)(0) + (0)(0) + (0)(0)
=
50
50 + 110 + 60 + 60
=
50
280
= 0. 179.
1-6 LetB be the event that the policyholder dies. LetA 1 , A 2 , A 3 be the events that the deceased is standard, preferred and ultra-preferred, respectively. Then
(! ) 0′ ( |! ) 0 ( ) ” 0′ ( | ” ) 0 0 0 0 0.
0’ ( ) 0 uu
) ) 0 0. ) ) 0.
0 (! | ‘ 0 ( !’ ) 0 ( ‘ |! ) 0 (! 0′ ( 0’ (
1 28 1 28
1 28
8
8! 1 4! 4! 2
1-8 Probability that exactly 2 of the 3 dice came up orange 2 3 2 4 3 4 2 6 6 6 6 6 6 6 6 6 18 18 18 18
3 4 1 4 2 7
Chapter 2 Discrete Distributions 7
Chapter 2
Discrete Distributions
2 Random Variables of the Discrete Type
2-2 (a)
f(x) =
§
̈
©
, x= 1 , , x = , 1 , x = , (b)
Figure 2–2: Line graph.
2-4 (a)f(x) =
1
10 , x= 0 , 1 , 2 ,···,9;
(b) N({ 0 })/150 = 11/150 = 0; N({ 5 })/150 = 13/150 = 0; N({ 1 })/150 = 14/150 = 0; N({ 6 })/150 = 22/150 = 0; N({ 2 })/150 = 13/150 = 0; N({ 7 })/150 = 16/150 = 0; N({ 3 })/150 = 12/150 = 0; N({ 8 })/ 150 = 18/150 = 0; N({ 4 })/150 = 16/150 = 0; N({ 9 })/150 = 15/150 = 0.
8 Section 2 Random Variables of the Discrete Type
(c)
x
f(x), h(x)
1 2 3 4 5 6 7 8 9
Figure 2–4: Michigan daily lottery digits
2-6 (a)f(x) = 6 −| 7 −x| 36
, x = 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ,12. (b)
x
f(x)
1 2 3 4 5 6 7 8 9 10 11 12
Figure 2–6: Probability histogram for the sum of a pair of dice
10 Section 2 Mathematical Expectation
2-12 P(X≥ 4 |X≥1) =
P(X≥4)
P(X≥1) =
1 −P(X≤3)
1 −P(X= 0)
=
1 −[1− 1 /2 + 1 / 2 − 1 /3 + 1 / 3 − 1 /4 + 1 / 4 − 1 /5]
1 −[1− 1 /2]
=
2
5
.
2-14P(X≥1) = 1−P(X= 0) = 1 −
3
0
17
5
20
5
= 1 − 91
228
=
137
228
= 0. 60.
2-16 (a)P(2, 1 , 6 ,10) means that 2 is in position 1 so 1 cannot be selected. Thus
P(2, 1 , 6 ,10) =
1
0
1
1
8
5
10
6
= 56
210
= 4
15
;
(b)P(i, r, k, n) =
i− 1 r− 1
1
1
n−i k−r
n k
.
2 Mathematical Expectation
2-
2-4 1 =
6
x=
f(x) = 9 10
+c
1
1
+ 1
2
+ 1
3
+ 1
4
+ 1
5
+ 1
6
c = 2 49
;
E(Payment) = 2 49
1 · 1
2
+ 2 · 1
3
+ 3 · 1
4
+ 4 · 1
5
+ 5 · 1
6
= 71
490
units.
2-6Note that
∞
x=
6
π 2 x 2
= 6
π 2
∞
x=
1
x 2
= 6
π 2
π 2 6
= 1, so this is a pdf
E(X) =
∞
x=
x 6 π 2 x 2
= 6
π 2
∞
x=
1
x
= + ∞
and it is well known that the sum of this harmonic series is notfinite.
2-8E(|X−c|) =
1
7
x∈S
|x−c|, where S={ 1 , 2 , 3 , 5 , 15 , 25 , 50 }.
Whenc= 5,
E(|X− 5 |) =
1
7
[(5−1) + (5−2) + (5−3) + (5−5) + (15−5) + (25−5) + (50−5)].2 2 2 2 2 2
2 2
E X ( )= 0 )( 2 941490
27 27
E X ( )= 0 )( 2 90 )( 1 4 (0) 1 )(1 4 (2) 980
27 27 27 27 27 27
E X ( 3 9) E X ( ) 3 E X ( ) 9+ 80 0 9 323
27 27
+0( 1 )+( 0 )+( 1 )+(2)=
27 27 27
+ + + + =
0 X + = 0 = 0+=
Chapter 2 Discrete Distributions 11
Ifcis either increased or decreased by 1, this expectation is increased by 1/7. Thus c= 5, the median, minimizes this expectation whileb=E(X) = μ, the mean, minimizes E[(X−b) 2 ]. You could also leth(c) = E(|X−c|) and show that h(c) = 0 when c= 5.
2-
2-12 (a)The average class size is
(16)(25) + (3)(100) + (1)(300)
20
= 50;
(b)
f(x) =
§
̈
©
4 , x= 25 , 3 , x= 100, 3 , x= 300,
(c)E(X) = 25(0) + 100(0) + 300(0) = 130.
2 Special Mathematical Expectations
2-2 (a) μ = E(X)
=
3
x=
x 3! x! (3 −x)!
1
4
x 3 4
3 −x
= 3
1
4
2
k=
2!
k! (2 −k)!
1
4
k 3 4
2 −k
= 3
1
4
1
4 +
3
4
2
=
3
4 ;
E[X(X−1)] =
3
x=
x(x−1) 3! x! (3 −x)!
1
4
x 3 4
3 −x
= 2(3)
1
4
2
3
4
+ 6
1
4
3
= 6
1
4
2
= 2
1
4
3
4
;
σ 2 = E[X(X−1)] +E(X)−μ 2
= (2)
3
4
1
4
+
3
4
−
3
4
2
= (2)
3
4
1
4
+
3
4
1
4
= 3
1
4
3
4
;
21 5
(15)
36 36 2
15 21 5
(15)
36 36 2
(20) 63055
36 36 6
15
+
=
0
( 15)
+0( 15)= 0
+0( 15)= 0
Chapter 2 Discrete Distributions 13
2-10We haveN=N 1 +N 2. Thus
E[X(X−1)] =
n
x=
x(x−1)f(x)
=
n
x=
x(x−1)
N 1!
x! ( N 1 −x)!·
N 2!
(n−x)! (N 2 −n+x)! N n
= N 1 (N 1 −1)
n
x=
(N 1 −2)!
(x−2)! (N 1 −x)!
· N 2!
(n−x)! (N 2 −n+x)! N n
.
In the summation, letk=x−2, and in the denominator, note that N n
= N!
n!(N−n)!
=N(N−1)
n(n−1)
N− 2
n− 2
.
Thus
E[X(X−1)] =
N 1 (N 1 −1)
N(N−1)
n(n−1)
n− 2
k=
N 1 − 2
k
N 2
n− 2 −k
N− 2
n− 2
= N 1 (N 1 −1)(n)(n−1) N(N−1)
.
2-
2-14P(X≥100) =P(X > 99) = (0) 99 = 0. 3697.
2-16 (a)f(x) = (1 /2)x− 1 , x = 2 , 3 , 4 ,… ;
XÅ F ( X )
0 0.
1 0.
2 0.
3 0.
4 0.
5 0.
6 0.
Mean = 1. Variance = 2. Standard deviation = 1. 0 ( 8Å > 3) = 0 ( 8Å = 4) + 0 ( 8Å = 5) + 0 ( 8Å = 6) = 0. 0 ( 8Å < 3) = 1 ñ 0 ( 8Å > 3) ñ 0 ( 8Å = 3) = 1 ñ 0 ñ 0 = 0.
14 Section 2 The Binomial Distribution
(b) M(t) = E[etx] =
∞
x=
etx(1/2)x− 1
= 2
∞
x=
(et/2)x
=
2(et/2) 2 1 −et/ 2 =
e 2 t 2 −et, t
k +j|X > k ) = P(X > k +j) P(X > k )
= q
k+j qk
=qj=P(X > j ).
2 The Binomial Distribution
2-
2-4 (a) X is b(Å ); (b) Errata: The value of 0 renders this part unsolvable. This will be revised and corrected.
2-6 (a) X FOLLOWSÅ BÅ); Y ÅÅÅ− X FOLLOWSÅBÅ);
(e) % X ÅÅ ÅÅÅÅÅÅ6ARÅ X ÅÅ ÅÅÅÅÅÅ3TATNDARDÅDEVIATIONÅÅ
2-8 (a) 0 8 ÅȴÅ ÅÅÅ Å 0 8 ÅȳÅ ÅÅ; (b) 0 8 ÅÅ ÅÅ ÅÅÅ 2-10 (a) X is b(8, 0 .90); (b) (i) P(X= 8) = P(8−X= 0) = 0 .4305; (ii) P(X≤6) = P(8−X≥2) = 1 −P(8−X≤1) = 1− 0 .8131 = 0; (iii) P(X≥6) = P(8−X≤2) = 0. 9619.
Errata: Å0ARTSÅB ÅC ÅANDÅD ÅCANNOTÅBEÅSOLVEDÅASÅTHEÅPROBABILITYÅVALUESÅ OFÅÅANDÅÅDOÅNOTÅEXISTÅINÅTHEÅGIVENÅTABLESÅINÅthe !PPENDIX
2 2 2
( 0 5) 117 ;
18 18
( 0 5) 11 +(5) 7 1.
8 18
( 05 +1) 11 +(5+1) 23.
8 18
f , f (5)
μ
σ
= =
= =
= 7
=
So you have finished reading the 수리 통계학 pdf topic article, if you find this article useful, please share it. Thank you very much. See more: 수리통계학 김우철 pdf, 수리통계학 강의, 수리통계학 강의노트, 수리통계학 10판 pdf, 서울대 수리통계학, 통계학 입문 pdf, 통계학개론 pdf, 확률론 PDF