Top 17 납산 배터리 리튬 배터리 Best 59 Answer

You are looking for information, articles, knowledge about the topic nail salons open on sunday near me 납산 배터리 리튬 배터리 on Google, you do not find the information you need! Here are the best content compiled and compiled by the https://toplist.Experience-Porthcawl.com team, along with other related topics such as: 납산 배터리 리튬 배터리 납산배터리 수명, 납축전지 리튬이온전지 비교, 납 배터리 인산 철 배터리, 전기차 납축전지, 인산 철 배터리 종류, 납 축전지 자기 방전, 축전지 2차 전지, 연 축전지 단점

납축 배터리는 리튬 이온 배터리보다 전력 저장 효율이 떨어집니다. 리튬 배터리는 대부분의 납축 배터리의 100 % 효율에 비해 거의 85 % 효율로 충전됩니다.


캠핑/차박 배터리 종류와 각배터리 장단점(납산, AGM, 인산철 이해)
캠핑/차박 배터리 종류와 각배터리 장단점(납산, AGM, 인산철 이해)


납산 배터리 vs. 리튬 배터리 : 전동 지게차에 가장 적합한 배터리는?

  • Article author: www.lithiumforkliftbattery.com
  • Reviews from users: 12239 ⭐ Ratings
  • Top rated: 4.5 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about 납산 배터리 vs. 리튬 배터리 : 전동 지게차에 가장 적합한 배터리는? Updating …
  • Most searched keywords: Whether you are looking for 납산 배터리 vs. 리튬 배터리 : 전동 지게차에 가장 적합한 배터리는? Updating 리튬 이온 배터리는 납산의 경우 100 % 미만으로 80 % 방전됩니다. 대부분의 납축 전지는 50 % 이상의 방전 깊이를 권장하지 않습니다. 수명 : 리튬 이온 배터리는 리드 a에서 단 5000-400 회 사이클에 비해 500 회 이상 사이클납산 대 리튬 배터리, 리튬 이온 배터리
  • Table of Contents:

리튬 이온 배터리 사실과 신화 분리

코멘트를 남겨주세요

납산 배터리 vs. 리튬 배터리 : 전동 지게차에 가장 적합한 배터리는?
납산 배터리 vs. 리튬 배터리 : 전동 지게차에 가장 적합한 배터리는?

Read More

리튬이온배터리 vs 납산배터리 완벽분석! : 네이버 블로그

  • Article author: m.blog.naver.com
  • Reviews from users: 13465 ⭐ Ratings
  • Top rated: 5.0 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about 리튬이온배터리 vs 납산배터리 완벽분석! : 네이버 블로그 리튬 배터리는 폴리머 전지와 이온 전지로 나뉘는데요. 리튬폴리모 전지는 알루미늄 파우치 팩 형태고, 리튬이온전지는 건전지 처럼 캔 type의 형태로 … …
  • Most searched keywords: Whether you are looking for 리튬이온배터리 vs 납산배터리 완벽분석! : 네이버 블로그 리튬 배터리는 폴리머 전지와 이온 전지로 나뉘는데요. 리튬폴리모 전지는 알루미늄 파우치 팩 형태고, 리튬이온전지는 건전지 처럼 캔 type의 형태로 …
  • Table of Contents:

카테고리 이동

이브이샵 공식 블로그

이 블로그 
이브이샵 제품
 카테고리 글

카테고리

이 블로그 
이브이샵 제품
 카테고리 글

리튬이온배터리 vs 납산배터리 완벽분석! : 네이버 블로그
리튬이온배터리 vs 납산배터리 완벽분석! : 네이버 블로그

Read More

오늘날 리튬이온 배터리가 정말 최선의 선택일까요? 2021

  • Article author: microtexindia.com
  • Reviews from users: 36249 ⭐ Ratings
  • Top rated: 3.4 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about 오늘날 리튬이온 배터리가 정말 최선의 선택일까요? 2021 리튬 이온 배터리는 에너지 밀도가 높습니다. 안전을 타협해도 안전합니까? 납축전지와 리튬이온전지의 비교. …
  • Most searched keywords: Whether you are looking for 오늘날 리튬이온 배터리가 정말 최선의 선택일까요? 2021 리튬 이온 배터리는 에너지 밀도가 높습니다. 안전을 타협해도 안전합니까? 납축전지와 리튬이온전지의 비교. 리튬 이온 배터리는 에너지 밀도가 높습니다. 안전을 타협해도 안전합니까? 납축전지와 리튬이온전지의 비교.
  • Table of Contents:

리튬 이온 배터리의 작동 원리

납축전지 화학의 장점

어떤 리튬 이온 배터리가 가장 좋습니까

리튬 이온 배터리는 재활용 가능한가요

리튬 이온 배터리가 폭발할 수 있습니까

리튬 이온 배터리 또는 납산 배터리

리튬 이온 배터리 란 무엇입니까

리튬 이온 배터리는 언제 발명되었습니까

누가 리튬 이온 배터리를 발명했습니까

리튬 이온 배터리는 어디에서 발명되었습니까

전기차에는 어떤 배터리가 사용되나요

리튬 배터리 지정

리튬 이온 배터리는 어떻게 작동합니까

리튬 이온 배터리는 어떻게 만들어지는가

리튬이온전지 – 활물질

리튬 이온 배터리 충전 방법

리튬 이온 배터리의 전기화학 전지 반응

전해질 및 고체 전해질 계면(SEI)

리튬 이온 배터리용 분리기

리튬이온전지의 활물질 원료

리튬 이온 배터리의 음극 재료

층상 산화물 – 리튬 이온 배터리의 양극 재료

스피넬 산화물 – 리튬 이온 배터리의 양극 재료

폴리음이온 산화물 – 리튬 이온 배터리의 양극 재료

양극재 제조 – 리튬이온전지

리튬 이온 배터리는 어떻게 제조됩니까 순서도

몇 가지 일반적인 예는 다음과 같습니다 졸-겔 방법

리튬이온전지 음극재 제조

인터칼레이션디인터칼레이션 그룹

리튬이온전지 분리막 생산

리튬 이온 배터리의 기타 재료

리튬 이온 배터리의 장점과 한계
– 리튬이온셀 제조

리튬 이온 전지 조립 공정

리튬이온전지 제조공정도

리튬 이온 배터리 – 형성 및 노화

뉴스레터에 가입하세요!

오늘날 리튬이온 배터리가 정말 최선의 선택일까요? 2021
오늘날 리튬이온 배터리가 정말 최선의 선택일까요? 2021

Read More

12V 납축전지는 퇴출되는가?

  • Article author: www.autoelectronics.co.kr
  • Reviews from users: 34044 ⭐ Ratings
  • Top rated: 3.4 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about 12V 납축전지는 퇴출되는가? 12V 리튬이온 배터리는 차량의 수명주기 동안 전체 배터리 동작의 유지관리 및 충전 제어를 위해 배터리 관리 시스템(BMS)이 필요하다. 이는 테슬라(Tesla)와 현대차가 … …
  • Most searched keywords: Whether you are looking for 12V 납축전지는 퇴출되는가? 12V 리튬이온 배터리는 차량의 수명주기 동안 전체 배터리 동작의 유지관리 및 충전 제어를 위해 배터리 관리 시스템(BMS)이 필요하다. 이는 테슬라(Tesla)와 현대차가 … 12V 납축전지는 퇴출되는가?
  • Table of Contents:
12V 납축전지는 퇴출되는가?
12V 납축전지는 퇴출되는가?

Read More

Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 금색| Motardinn

  • Article author: www.tradeinn.com
  • Reviews from users: 24890 ⭐ Ratings
  • Top rated: 4.0 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 금색| Motardinn 6 및 12 볼트 납산 배터리 (WET, MF, AGM 및 Gel) 및 리튬 LiFePo4 배터리 용 CANBUS 가능 배터리 충전기. 이 충전기를 사용하여 필요할 때 배터리를 재충전하거나 장시간 … …
  • Most searched keywords: Whether you are looking for Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 금색| Motardinn 6 및 12 볼트 납산 배터리 (WET, MF, AGM 및 Gel) 및 리튬 LiFePo4 배터리 용 CANBUS 가능 배터리 충전기. 이 충전기를 사용하여 필요할 때 배터리를 재충전하거나 장시간 … Motardinn에서 단 1774216 vnd에 대해 가장 저렴한 가격으로 에서 Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A – 금색, 배터리 구매 | 빠른 배달Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A, 전자제품, 배터리, 모터사이클, 모터사이클
  • Table of Contents:
Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 금색| Motardinn
Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 금색| Motardinn

Read More


See more articles in the same category here: 51+ tips for you.

납산 배터리 vs. 리튬 배터리 : 전동 지게차에 가장 적합한 배터리는?

2020 / 06 / 02 | 리튬 지게차 배터리 | 0

무엇보다도 변화는 일반적으로 회의적으로 간주됩니다. 납 산은 150 년 동안 넘쳐 흐르는 곳이었습니다. 대부분의 산업은 새롭고 변화하는 기술에 적응하는 데 필요한 변화와 업그레이드를 싫어합니다. 그러나 속담이 있기 때문에 변함없는 것은 변화입니다. 무게, 위험한 산성 염기 및 오래된 효율성으로 납산을 끝낼 때입니다.

지게차 차량에 배터리를 사용하는 기업의 가장 중요한 특성 중 하나는 배터리의 수명입니다. 사용하는 동안 배터리가 얼마나 오래 지속되는지는 회사 운영 중에 중요한 역할을합니다. 비즈니스의 수익과 관련된 경우 효율성이 중요합니다. 리튬 이온 대 납산 배터리 수명

리튬 이온 또는 납산 축전지 수명이 차량에 더 적합할지 여부를 측정 할 때 두 가지 가장 큰 차이점은 다음과 같습니다.

사용 시간

리튬 이온 배터리와 납산 배터리 사이에는 일상적인 작동 중 배터리 수명에 큰 차이가 있습니다.

납축 전지 단점

1) 제한된 “사용 가능한”용량 :

일반적으로 일반적인 납축 “딥 사이클”배터리 정격 용량의 30 %-50 % 만 사용하는 것으로 간주됩니다. 이는 실제로 600 암페어 시간 배터리 뱅크가 실제 용량의 기껏해야 300 암페어 시간 만 제공한다는 것을 의미합니다.

가끔 배터리를 아주 많이 소모하면 수명이 크게 단축 될 것입니다.

2) 제한된 수명

배터리를 쉽게 사용하고 과도하게 소모하지 않도록주의하더라도 가장 단순한 딥 사이클 납축 배터리도 일반적으로 500-1000 사이클 동안 만 좋습니다. 배터리 뱅크를 자주 사용한다면 2 년이 지나도 배터리를 교체 할 수 있습니다.

3) 느리고 비효율적 인 충전

납 축전지의 일반적인 충전 및 사용주기는 8 시간 사용, 8 시간 충전, 3 시간 휴식 또는 진정입니다. 이는 납 축전지가 하루에 한 번만 사용할 수 있음을 의미합니다. 기업이 근로자를 고용하여 XNUMX ~ XNUMX 교대를 숨기면 납 축전지를 교체해야합니다. 즉, 차량 또는 키트 한 개당 XNUMX ~ XNUMX 개의 배터리가 필요합니다 (교대 당 XNUMX 개).

소프트웨어 개발 프로젝트와 마찬가지로 작업의 궁극적 인 20 %는 시간의 80 %를 차지할 수 있습니다.

하룻밤 동안 충전하는 경우 이것은 큰 문제가 아니지만 몇 시간 동안 작동하는 발전기를 꺼야하는 경우에는 큰 문제입니다 (종종 시끄럽고 실행 비용이 많이 듭니다). 그리고 당신이 태양열을 믿고 있고 따라서 최종 20 %가 끝나기 전에 해가지는 경우, 실제로 완전히 충전되지 않는 배터리를 쉽게 찾을 수 있습니다.

납축 배터리를 정기적으로 완전히 충전하지 못하면 조기에 노화된다는 사실이 아니라면 궁극적으로 몇 퍼센트를 완전히 충전하지 않는 것은 실제로 큰 문제가되지 않습니다.

4) 낭비되는 에너지

발전기 시간을 낭비하는 전부 또는 일부 외에도 납축 배터리는 또 다른 효율성 문제를 겪고 있습니다. 이는 고유 한 충전 비 효율성을 통해 최대 15 %의 에너지를 낭비합니다. 따라서 100 암페어의 전력을 제공하면 85 암페어 시간 만 저장됩니다.

태양이 내리거나 구름으로 덮이기 전에 가능한 한 각 앰프에서 최대 효율을 끌어 내려고하면 태양열을 통해 충전 할 때 특히 실망 스러울 수 있습니다.

5) 배치 문제

침수 된 납축 전지는 충전하는 동안 유해한 산성 가스를 방출하므로 표면으로 배출되는 밀폐 된 배터리 상자에 보관해야합니다. 배터리 산 유출을 방지하기 위해 수직으로 보관해야합니다.

AGM 배터리에는 이러한 제약이 없으며 통풍이되지 않는 곳에 놓을 수 있습니다. 심지어 lebensraum 내부에서도 마찬가지입니다. 이것은 종종 AGM 배터리가 유행하는 선원이되었다는 설명 중 하나입니다.

6) 유지 보수 요구 사항

침수 된 납 축전지는 주기적으로 물을 채워야합니다. 배터리 베이를 사용하기 어려운 경우 유지 관리가 번거로울 수 있습니다.

AGM과 겔 세포는 진정으로 유지 보수가 필요 없습니다. 유지 보수가 필요 없다는 단점이 있습니다. 실수로 과충전 된 플러드 셀 배터리는 끓는 물을 교체하여 회수 할 수 있습니다. 과충전 된 젤 또는 AGM 배터리는 일반적으로 돌이킬 수 없게 파괴됩니다.

7) Peukert의 손실 및 전압 강하

완전히 충전 된 48V 납축 축전지는 약 51.2V에서 시작하지만 방전되기 때문에 전압이 꾸준히 떨어집니다. 배터리에 전체 용량의 48 %가 여전히 남아 있으면 전압이 35V 아래로 떨어지지 만 일부 전자 장치는 작동하지 않을 수 있지만 전체 48V 공급으로 작동합니다. 이 “처짐”효과는 조명을 어둡게 만들 수도 있습니다.

리튬 이온 배터리 : 사실과 신화 분리

리튬 이온 배터리는 오늘날 에너지 솔루션의 최전선에 있습니다. 이 진화하는 기술에 대해 더 알고 싶으십니까?

1) 뛰어난 “가용”용량

납축 배터리와 달리 리튬 배터리 뱅크 정격 용량의 85 % 이상을 정기적으로 사용하는 것이 실용적이며 드물게 더 많이 사용하는 것으로 간주됩니다. 100 암페어 시간 배터리를 생각해보십시오. 납산 이었다면 30 ~ 50 암페어 시간의 주스를 ​​사용하는 것을 알 수 있지만 리튬을 사용하면 85 암페어 시간 이상을 활용할 수 있습니다.

2) 수명 연장

실험실 결과에 따르면 LiFePO2000 배터리 뱅크를 잘 관리하여 5000 ~ 4 사이클을 확인할 수 있습니다. 이것은 이론적 결과이지만 최근 측정에 따르면 A 배터리는 75주기 후에도 여전히 용량의 2000 %를 제공합니다.

대조적으로, 가장 단순한 딥 사이클 납축 배터리조차도 일반적으로 500-1000 사이클에만 적합합니다.

3) 빠르고 효율적인 충전

리튬 이온 배터리는 종종 용량의 100 %까지 “빠르게”충전됩니다. 납 산과는 달리 최대 20 % 저장을 촉진하기 위해 흡수 단계가 필요하지 않습니다. 또한 충전기가 충분히 강력하다면 리튬 배터리도 엄청나게 빠르게 충전 할 수 있습니다. 충분한 충전 앰프를 제공하면 실제로 리튬 이온 배터리를 XNUMX 분 만에 완전히 충전 할 수 있습니다.

그러나 100 %까지 완전히 충전 할 수는 없지만 걱정할 필요는 없습니다. 납 축전지와 달리 리튬 이온 배터리를 정기적으로 완전히 충전하지 못하더라도 배터리가 손상되지는 않습니다.

이를 통해 정기적으로 완전 충전을 원하는 것에 대한 두려움없이 에너지 원을 얻을 때마다 에너지 원을 활용할 수있는 엄청난 유연성을 제공합니다. 태양계와 함께 부분적으로 흐린 날이 있습니까? 당신이 당신의 필요를 계속 유지하는 한 해가지기 전에 단순히 다시 채울 수 없다는 문제는 없습니다. 리튬을 사용하면 배터리 뱅크를 영구적으로 과소 충전 된 상태로 두는 것에 대해 걱정하지 않고 원하는 것을 흔들어 놓을 수 있습니다.

4) 낭비되는 에너지가 거의 없거나 전혀 없음

납축 배터리는 리튬 이온 배터리보다 전력 저장 효율이 떨어집니다. 리튬 배터리는 대부분의 납축 배터리의 100 % 효율에 비해 거의 85 % 효율로 충전됩니다.

태양이지고 구름으로 덮이기 전에 가능한 한 각 앰프에서 최대 효율을 끌어 내려고하면 태양열을 통해 충전 할 때 특히 중요 할 수 있습니다. 이론적으로 리튬은 거의 모든 태양 방울을 사용하여 배터리를 수집 할 준비가 된 것입니다. 패널을 보관할 수있는 제한된 지붕 및 공간으로 인해 장착 준비가 된 모든 평방 인치의 와트를 최적화하는 데 필수적입니다.

5) 기후 저항

납축 배터리와 리튬은 추운 환경에서 용량을 잃습니다. 아래 다이어그램에서 볼 수 있듯이 리튬 이온 배터리는 저온에서 훨씬 더 효율적입니다. 또한 방전율은 납축 배터리의 성능에 영향을 미칩니다. -20 ° C에서 1C 전류 (용량의 한 번)를 제공하는 리튬 배터리는 AGM 배터리가 용량의 80 %를 제공 할 때 에너지의 30 %를 제공 할 수 있습니다. 혹독한 환경 (뜨거운 환경과 추운 환경)에서 리튬 이온이 기술 선택입니다.

6) 더 적은 배치 문제

리튬 이온 배터리는 똑바로 세워서 보관하거나 통풍이 잘되는 배터리 칸에 보관할 필요가 없습니다. 그들은 또한 매우 쉽게 이상한 모양으로 조립 될 것입니다. 가능한 한 작은 구획에 최대한의 힘을 짜내려고한다면 플러스입니다. 이는 크기가 제한된 기존 배터리 베이가 있지만 현재 납 산이 제공 할 준비가 된 것보다 더 많은 용량을 원하거나 필요로 할 때 특히 유용합니다.

7) 적은 유지 보수 요구 사항

리튬 이온 배터리는 유지 보수가 상당히 필요합니다. BMS (Battery Management System)는 배터리 뱅크 동안 모든 셀이 균등하게 충전되도록하는 “밸런싱”프로세스를 자동으로 수행합니다. 배터리를 충전하기 만하면 여행 할 수 있습니다.

8) Peukert의 손실 및 전압 강하는 거의 존재하지 않음

리튬 배터리의 방전 곡선 (특히 스티 르산 기준)은 실제로 평평합니다. 즉, 20 % 충전 된 배터리는 80 % 충전 된 배터리와 거의 동일한 출력 전압을 제공합니다. 이렇게하면 납축이 방전 될 때 흔히 발생하는 “전압 강하”로 인한 문제를 방지 할 수 있지만, 전압 수준에 따라 배터리 모니터 또는 발전기 자동 시작이 리튬 뱅크를 모니터링 할 때 최소한 제대로 작동하지 않을 가능성이 높습니다.

반대로 리튬 배터리가 완전히 방전되면 전압이 빠르게 급강하합니다. 즉, 배터리를 보호하는 BMS 역할이 이러한 일이 발생하지 않도록합니다. 리튬 이온 뱅크를 한 번이라도 완전히 방전하면 전체 팩이 영구적으로 죽을 수 있습니다.

리튬 배터리의 또 다른 큰 장점은 Peukert의 손실이 본질적으로 존재하지 않는다는 것입니다. 이는 리튬 이온 배터리가 고전류에서도 최대 정격 용량을 제공 할 수 있음을 의미합니다. 납 산은 최대량을 고부하에서 40 % 용량 손실로 볼 수 있습니다. 실제로 이는 리튬 이온 배터리 뱅크가 에어컨, 전자 레인지 또는 인덕션 쿡탑과 같은 고전류 부하에 전력을 공급하는 데 적합하다는 것을 의미합니다.

9) 크기 및 무게 장점

평균 리튬 이온 배터리의 무게는 40 ~ 60 %이지만 표준 LAB입니다. 그것만으로도 거의 모든 응용 분야에서 연비를 크게 절약하거나 계수 등급을 끌 수 있습니다.

숫자에 의한 요약

1) 무게 : 리튬 이온 배터리는 납축 배터리 부하의 XNUMX/XNUMX입니다.

2) 효율성 : 리튬 이온 배터리는 충전 및 방전 모두에서 거의 100 % 효율이 높기 때문에 안팎에서 동일한 암페어 시간을 허용합니다. 납축 배터리의 비효율은 충전 중에 15A의 손실을 초래하고 급속 방전은 전압을 빠르게 떨어 뜨리고 배터리 용량을 감소시킵니다.

3) 방전 : 리튬 이온 배터리는 납산에 대해 100 % 방전되지만 80 % 방전됩니다. 대부분의 납축 전지는 50 % 깊이의 방전을 권장하지 않습니다.

4) 수명 : 리튬 이온 배터리는 납산에서 5000-400 회만 사용하는 것과 비교하여 500 회 이상을 반복합니다. 리튬 이온 배터리에서는 약간의 영향을받는 반면, 납산의 방전 수준이 높으면 사이클 수명이 크게 달라집니다.

5) 전압 : 리튬 이온 배터리는 전체 방전주기 동안 전압을 유지합니다. 이를 통해 전기 부품의 효율성이 더 길고 오래 지속됩니다. 납산 전압은 방전주기 내내 지속적으로 떨어집니다.

6) 비용 : 리튬 이온 배터리의 초기 비용이 높음에도 불구하고 실제 소유 비용은 수명과 성능을 고려할 때 납산입니다.

7) 환경 영향 : 리튬 이온 배터리는 청정 기술이며 환경에 더 안전합니다.

히프 라인

차량용 배터리 구매는 상당한 투자가 될 수 있습니다. 각 배터리의 수명은 회사 운영 및 직원의 효율성에 직접적인 영향을 미칩니다.

리튬 이온 배터리가 제공하는 가장 큰 장점 중 하나는 일상적인 작업 중에 긴 수명과 긴 배터리 수명입니다. 충전을위한 짧은 중단 시간이있는 리튬 이온 배터리는 창고 운영과 같은 다중 교대 위치에서 특히 유용합니다.

하나의 배터리는 3 교대 동안 전원을 공급할 수 있습니다. 반면에 납 축전지는 충전 및 냉각 기간이 필요하기 전에 XNUMX 시간 동안 XNUMX 교대로만 전력을 공급할 수 있습니다. 이를 위해서는 모든 차량에 대해 교대 당 하나의 배터리가 필요하므로 회사는 향후 훨씬 더 많은 비용이 듭니다.

12V 납축전지는 퇴출되는가?

12V 납축전지는 퇴출되는가?

2022년 03월호 지면기사 / 글 | 전영삼 상무, 아시아태평양 오토모티브 사업개발 담당, Vicor Corporation

자동차용 12V 납축전지는 종말을 맞았다. 유럽은 2030년 이후 어떤 신차에도 납축전지를 장착하지 않을 것이라고 선언했으며, OEM들은 대체 솔루션을 찾아야 하는 상당히 어려운 과제에 직면하게 되었다. 이는 힘든 작업이 될 수도 있지만, 환경적으로 유해한 배터리를 제거하는 동시에 차량 무게를 줄이고 효율성을 향상시킬 수 있는 엄청난 기회가 될 것이다.

글 | 전영삼 상무, 아시아태평양 오토모티브 사업개발 담당, Vicor Corporation

12V 납축전지는 퇴출되는가? 결론부터 말하자면 “그렇다”.

자동차용 12V 납축전지는 종말을 맞았다. 유럽은 2030년 이후 어떤 신차에도 납축전지를 장착하지 않을 것이라고 선언했으며, OEM들은 대체 솔루션을 찾아야 하는 상당히 어려운 과제에 직면하게 되었다. 이는 힘든 작업이 될 수도 있지만, 환경적으로 유해한 배터리를 제거하는 동시에 차량 무게를 줄이고 효율성을 향상시킬 수 있는 엄청난 기회가 될 것이다.

12V 배터리 및 전력분배 네트워크(Power Delivery Network, PDN)는 안전과 관련된 일부 중요한 부하를 포함해 수백 개의 부하를 지원하는 세계적인 표준이며, 이러한 솔루션은 혁신적이고 견고해야 한다. 고전압을 비롯해 48V 및 12V PDN을 상호 연결하는 데 사용되는 고밀도의 고전압, 고효율 전력 모듈은 이러한 당면 과제에 대응할 수 있는 가장 유연하고 확장 가능한 솔루션을 제공한다.

OEM은 가능한 솔루션을 고려할 때 보다 뛰어난 성능의 새로운 기능을 지원하기 위해 추가되는 더 많은 전력과 더 긴 주행거리 및 향상된 열 관리를 위한 효율성 증가, CO2 감소, 케이블 라우팅 최적화, 하네스 무게 감소, EMI 요건 충족 등과 같은 여러 주요 요소를 고려해야 하며, 이러한 요구사항은 복잡한 방정식 내의 변수들에 해당한다.

이러한 방정식을 해결하는 데는 두 가지 기본 옵션이 있다. 12V 납축전지를 12V 리튬이온 배터리로 교체하는 것이 첫 번째 옵션이다. 무게는 약간 감소하지만, 수십 년 동안 사용된 기존의 12V PDN이 유지되면서 추가적인 이점은 없다. 다른 옵션은 EV 및 HEV/PHEV의 기본 400V 또는 800V 배터리에서 전원을 공급받는 12V PDN을 지원하는 것이다. 후자의 옵션은 많은 이점이 있지만, 두 가지 모두 추가 검토가 필요하다.

그림 1 | 리던던트 전압 레귤레이터 스테이지를 사용하는 12V 배터리 기반의 xEV에 사용된 일반적인 E/E. HV-12V DC-DC는 12V 배터리를 충전하기 위해 12V 출력으로 변환한다. 차량의 모든 12V 부하에는 부하가 동작하는데 필요한 적절한 레일 전압을 공급하기 위한 프리-레귤레이터가 있다.

12V 리튬이온 배터리로 전환

12V 납축전지를 12V 리튬이온 배터리로 교체하면 무게를 최대 55%까지 줄일 수 있지만, 비용 부담이 크다. 12V 리튬이온 배터리는 차량의 수명주기 동안 전체 배터리 동작의 유지관리 및 충전 제어를 위해 배터리 관리 시스템(BMS)이 필요하다. 이는 테슬라(Tesla)와 현대차가 취하고 있는 방식이다.

또한, 12V 리튬이온 배터리를 재충전하여 전기 부하를 공급하기 위해서는 HV(High Voltage)에서 12V(전압 및 전류 레귤레이션 기능이 있는)로 변환하는 부피가 큰 DC-DC 컨버터를 추가해야 한다. 이것은 아무런 이점을 제공하지 않는다. 무게와 차량 패키징의 복잡성, 시스템 비용이 추가되고, 차량의 전반적인 신뢰성을 감소시킨다. 이에 비해 12V 배터리를 완전히 제거하면, 자동차 무게를 13 kg 줄일 수 있고, 적재공간을 2.4%까지 향상시킬 수 있다.

기존의 12V PDN은 비효율적이다

물리적으로 12V 배터리를 유지하는 것은 불필요한 리던던시(redundancy)를 유발하여 비효율적인 PDN을 유지하는 것과 같다. 일반적인 차량용 12V PDN의 경우, 12V 버스에 연결된 모든 12V 부하에는 보통 6 ~ 16V의 넓은 입력전압 범위를 5V 및 3.3V 또는 그 이하의 레귤레이션 레일로 변환할 수 있는 내부 프리-레귤레이터(pre-regulator)가 있다. EV, HEV 또는 PHEV에 대한 글로벌 시스템 관점에서 보면, 이는 직렬 레귤레이터 스테이지가 중복되는 것이다. 고전압에서 12V로 변환하는 DC-DC 컨버터는 12V 버스를 (효율적으로) 레귤레이션하고, 프리-레귤레이터는 각 부하에 적합한 내부 레일 전압을 제공한다(그림 1).

이러한 기존 아키텍처는 배터리를 충전하거나 크랭킹(Cranking) 이벤트 시 무선 동작 유지 또는 백열 전조등의 적절한 휘도를 유지하기 위해 레귤레이션이 필요한 민감한 12V PDN의 교류발전기가 차량에 사용되던 때부터 시작되었다. OEM은 매우 창의적으로 12V 전력 제한을 피하기 위해 노력했으며, 최근 몇 년 동안 2개의 12V 배터리와 파워스티어링을 위한 하나의 24V 배터리, 그리고 이들 사이에 여러 DC-DC 컨버터를 사용하는 복잡한 전기 아키텍처를 설계했다.

12V를 가상 배터리로 교체

이러한 문제를 해결하기 위한 더 나은 접근방식은 자동차 PDN을 완전히 재고하는 것이다. 물리적인 12V 배터리를 제거하고, 기본 EV 배터리에서 12V ‘가상(Virtual)’ 배터리를 만들어 이를 교체할 수 있다(그림 2). 모든 EV는 주 배터리를 가지고 있기 때문에 추가 에너지 스토리지 장치를 탑재하는 것은 적절하지 않다. 이상적인 자동차 아키텍처는 파워트레인과 모든 보조 부하에 전력을 공급하기 위해 하나의 고전압(HV) 배터리를 사용하는 것이다. 바이코(Vicor)의 고밀도 버스 컨버터 모듈 기술은 HV 배터리(400V 또는 800V)에서 직접 저전압 배터리(48V 또는 12V)를 가상화하여 이러한 접근방식을 구현할 수 있다.

그림 2 | 최적화된 E/E 아키텍처는 물리적인 12V 배터리를 제거하는 것이다. 바이코의 BCM 버스 컨버터 기술을 통해 고전압 배터리를 변환하여 가상 12V 배터리를 생성할 수 있다.

ZVS/ZCS(Zero-Voltage, Zero-Current Switching)를 활용하는 바이코의 BCM® 버스 컨버터는 기존 컨버터에 비해 더 높은 주파수에서 동작하기 때문에 물리적인 배터리보다 반응성이 뛰어나다. 예를 들어, BCM6135는 1.2 MHz에서 동작하며 기존의 ZVS/ZCS 공진형 컨버터와 달리 협대역 주파수 내에서 동작한다(그림 3). BCM의 고주파수 동작은 부하 전류의 변화에 따라 빠른 응답과 입력에서 출력까지 낮은 임피던스 경로를 제공한다. BCM은 고정비 변환(Fixed-ratio conversion)과 양방향 동작, 빠른 과도응답(8 MA/s 이상) 및 낮은 임피던스 경로를 통해 HV 배터리를 48V 배터리처럼 보이게 하는데, 이를 ‘트랜포메이션(transformation)’이라고 한다. 이러한 전원 소스를 변형시키는 기능은 기존의 컨버터와 비교할 때 주요 이점이자 주요 차별화 요소이다.

그림 3 | BCM6135의 빠른 부하 과도응답은 12V 부하를 지원하는 핵심이다. 과도응답은 초당 8메가 암페어(8 MA/s)이다. 노란색: 입력 전압(800 VDC), 빨간색: 출력 전압(48V), 파란색: 출력 전류

그림 4 | BCM 버스 컨버터의 기능 블록 다이어그램. DC-DC 변환은 물론, BCM은 트랜스포머를 사용해 고효율로 AC-AC 변환이 가능하며, K 계수로 규모를 조정하고 스위칭 블록을 사용해 AC-DC 변환을 처리한다. 스위칭은 고주파수에서 이뤄지며, 트랜스포머와 같은 에너지 전달 변환으로 과도 부하 변화에 따라 빠르게 응답하고, 입력 및 출력 간에 낮은 임피던스 경로를 제공한다.

BCM6135 부하 스텝 과도

바이코의 BCM은 입력 전압의 고정 비율로 출력 전압을 제공하는 고정 비율 컨버터로 동작한다. 바이코의 BCM6135 컨버터는 절연되어 있으며, 61 × 35 × 7 mm 패키지로 2.5 kW의 전력을 97% 이상의 피크 효율로 제공한다. 또한, 더 많은 전력을 제공할 수 있도록 어레이로 쉽게 병렬화 할 수 있다.

BCM의 고정 비율 특성은 가상 배터리가 적절한 동작 범위 내에서 유지되도록 해준다. 예를 들어, 800V 배터리 구동 전기자동차에서 HV 배터리는 520 ~ 920V를 유지하도록 보장한다. 1/16 비율의 BCM6135는 32.5 ~ 57.5V의 전압 범위를 유지함으로써 48V 배터리를 가상화한다. BCM6135 1/8 비율은 400V 전기자동차에 사용할 수 있다(그림 3).

배터리 가상화는 1/4의 고정 비율 컨버터를 사용해 12V 버스로 확장할 수 있다. 이 경우 갈바닉 절연이 필요하지 않으며, 바이코의 NBM?버스 컨버터를 사용할 수 있다. BCM의 다른 모든 기능과 마찬가지로 NBM 비절연 버스 컨버터는 빠른 과도응답과 낮은 임피던스 및 양방향 동작과 같은, 앞서 설명한 모든 이점을 동일하게 제공한다. 12V의 전압 범위는 HV 배터리 전압에 대한 고정 비율로 8.125 ~ 14.375V를 유지한다. BCM 및 NBM 기술은 차량의 각 전력 네트워크를 연결하는 이상적인 트랜스포머이다.

표 1 | 바이코의 BCM/NBM 버스 컨버터 기술을 이용한 48V 버스 및 12V 버스의 최소 및 최대 전압. 48V 및 12V 전압 범위는 모두 VDA 320 및 LV 124와 호환된다.

그림 5 | BCM6135 및 NBM2317 모듈을 기반으로 12V 및 48V 배터리 가상화를 지원하는 E/E 아키텍처. 48V 버스는 A/C 콘덴서, 워터펌프 및 능동형 섀시 안정화 시스템과 같은 차량의 더 높은 부하에 전력을 공급할 수 있는 보다 효율적인 소스로도 사용할 수 있다.

기능안전 부하에 대한 전력공급 리던던시를 보장하는 것은 필수이다. 바이코의 전력 모듈은 전력 및 공급 면에서 확장이 가능하며, 리던던트 PDN으로 동작하도록 설계할 수 있어 기능적으로 안전이 중요한 부하에 2개의 전용 전력변환 경로를 제공할 수 있다. 궁극적으로 OEM은 ADAS, 조향 및 제동과 같은 중요 시스템의 기능안전 동작을 보장하기 위해 로컬 에너지 스토리지를 구현할 수 있다.

기로에 있는 전기차의 전력분배 네트워크

12V 납축전지는 조만간 유럽에서 사라질 것이다. 따라서, 지금이 바로 전기차의 전력분배 네트워크에 대한 재설계를 주도하고 있는 모든 혁신을 고려할 때이다.

자동차의 전기 PDN은 12V 전력분배의 기로에 서 있다. 아키텍처 변경을 최소화하면서도 점점 더 많은 전력 부하가 차량에 구현되고 있다. 테슬라의 CEO 일론 머스크(Elon Musk)는 “12V로 무엇을 할 수 있는가? 12V는 과거의 잔재일 뿐이며, 이는 매우 낮다”고 말했다.

OEM은 더욱 다양한 전기자동차와 성능을 제공하기 위해 더 나은 PDN 설계에 주력하고 있다. 12V 배터리를 완전히 제거하는 것은 무게와 공간을 줄이고, 더 나은 과도응답과 시스템 성능을 제공할 수 있는 솔루션이다.

Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 금색

상품 정보 Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A

자동 번역 원문 설명은 여기 있습니다

6 및 12 볼트 납산 배터리 (WET, MF, AGM 및 Gel) 및 리튬 LiFePo4 배터리 용 CANBUS 가능 배터리 충전기.

이 충전기를 사용하여 필요할 때 배터리를 재충전하거나 장시간 (예 : 겨울철) 배터리를 켜 두어 배터리 수명을 연장 할 수 있습니다.

빈티지 자동차, 자동차, 캠핑카, 제트 스키, 잔디 깍는 기계, 스노우 모빌 등의 배터리에도 적합합니다.

충전기를 사용하여 시중의 거의 모든 스타터 배터리를 충전 할 수 있습니다

향후 증거 : (표준?) 리튬 배터리가 장착 된 오토바이를 사용하더라도 충전기를 계속 사용할 수 있습니다

모드 버튼을 켠 후 리튬, 6 또는 12 볼트 배터리가 연결되어 있는지 자동으로 감지합니다.

12 볼트에서, 최대 충전 전력 (0.9A)이 감소 된 소형 배터리 또는 특수 충전주기가있는 AGM 배터리를 일반 충전의 대안으로 연결할지 여부를 선택할 수 있습니다.

배터리의 충전 상태를 확인하고 최적의 충전 과정 또는 신선도 유지 모드를 자동으로 시작합니다

사용한 배터리를 복원하기 위해 내장 배터리 탈황 기. 또한 손상되지 않고 방전 된 2 볼트 배터리를 다시 활성화 할 수 있습니다

CANBUS가 장착 된 대부분의 모델에서 원래 온보드 플러그 소켓 연결에 적합 (예 : BMW, Ducati, Triumph 및 Harley Davidson) – 적합한 어댑터가 필요할 수 있습니다 (옵션 참조).

플러그를 꽂고 차량 사용을 잊어 버리는 것 – 충전기는 그 사이의 모든 것을 수행합니다.

배터리 단자에 직접 나사로 조일 수있는 작은 구멍에 부착 된 제거 가능한 악어 클립 포함

이것은 배터리가 도달하기 어려운 경우 특히 작동합니다

충전기에 대한 연결은 X Connect 플러그를 통해 이루어집니다. – 추가 액세서리를 연결할 수도 있습니다 (옵션 참조).

X Connect 소켓이 배터리에 단단히 고정되어 있으면 고무 덮개로 닫을 수 있습니다

하우징은 벽에 고정 된 2 개의 홀딩 구멍을 통해 연결될 수 있습니다 (내경 4mm)

소켓 위치와 독립적으로 작동하는 매우 긴 케이블

입력 전압 100 V 240 V AC, 50 60 Hz, 최대 소비량 60 와트

최대 3500mA의 충전 전류 – 최대 120Ah의 배터리에 적합, 더 큰 배터리에도 신선도 모드

보호 등급 : IP65

명세서:

치수:

길이 x 너비 x 높이 하우징 : 193 x 69 x 48 mm

넓은 악어 클립 금속 / 플라스틱 : 12/15 mm

콘센트에 케이블 길이 장치 : 200 cm

X 연결 플러그에 대한 케이블 길이 장치 : 145cm

케이블 길이 플러그를 배터리 연결 그로밋에 연결 : 56 cm

케이블 길이 팁 악어 클립에 플러그 연결 : 64cm

구멍 : 6.5 mm (M6)

중량 : 715g

Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 제품을 구입하여 여러분의 모터사이클 장구류를 완벽하게 구비하세요! 고객 여러분은 우리 온라인 스토어 motardinn가 제공하는 다양한 이점을 누리실 수 있습니다. 우리 motardinn에서 원하시는 상품을 주문하시고 빠른 시일 내에 받아보세요. 또 우리 motardinn는 모터사이클을/를 위한 Hi q tools 납산+리튬 배터리용 PM3500 6/12V 3.5A 관련 제품도 취급하고 있습니다.

So you have finished reading the 납산 배터리 리튬 배터리 topic article, if you find this article useful, please share it. Thank you very much. See more: 납산배터리 수명, 납축전지 리튬이온전지 비교, 납 배터리 인산 철 배터리, 전기차 납축전지, 인산 철 배터리 종류, 납 축전지 자기 방전, 축전지 2차 전지, 연 축전지 단점

Leave a Comment