You are looking for information, articles, knowledge about the topic nail salons open on sunday near me 원리 해설 중학 수학 2 2 답지 on Google, you do not find the information you need! Here are the best content compiled and compiled by the toplist.Experience-Porthcawl.com team, along with other related topics such as: 원리 해설 중학 수학 2 2 답지 원리해설 중학수학 2-1 답지, 원리해설 3-2 답지, 원리해설 3-1 답지, 원리해설 1-1 답지
2021 에이급 원리해설 수학 중2하 답지 정답
- Article author: caac.tistory.com
- Reviews from users: 15443 Ratings
- Top rated: 3.4
- Lowest rated: 1
- Summary of article content: Articles about 2021 에이급 원리해설 수학 중2하 답지 정답 기본에서 심화까지 한 권으로 해결되는 새로운 중학수학의 기본서입니다. 꼭 알아야 할 원리를 한 눈에 볼 수 있고 빠짐없는 유형과 풍부한 문항들을 담았 … …
- Most searched keywords: Whether you are looking for 2021 에이급 원리해설 수학 중2하 답지 정답 기본에서 심화까지 한 권으로 해결되는 새로운 중학수학의 기본서입니다. 꼭 알아야 할 원리를 한 눈에 볼 수 있고 빠짐없는 유형과 풍부한 문항들을 담았 … 에이급 원리해설 수학 중2-2 답지 정답입니다. 저작권은 해당 출판사에 있습니다. 에이급 원리해설 수학 중2하 답지는 아래로 내리면 있습니다. ^^ [ 표지 확인하세요! ] 첫 번째 이야기 : 책 소개 기본에서 심화..
- Table of Contents:
답지책방
2021 에이급 원리해설 수학 중2하 답지 정답 본문
티스토리툴바
ZUAKI’s info :: 원리해설 중학수학 중2 하 답지 무료다운
- Article author: zuaki.tistory.com
- Reviews from users: 31106 Ratings
- Top rated: 4.3
- Lowest rated: 1
- Summary of article content: Articles about ZUAKI’s info :: 원리해설 중학수학 중2 하 답지 무료다운 학교 생활은 잘 하고 있나요? 주아키랍니다 오늘 요청했던 답지인 원리해설 중학수학 중2 하 답지를 올려요. 이 글 하단 쪽에 올려두었으니 스크롤 … …
- Most searched keywords: Whether you are looking for ZUAKI’s info :: 원리해설 중학수학 중2 하 답지 무료다운 학교 생활은 잘 하고 있나요? 주아키랍니다 오늘 요청했던 답지인 원리해설 중학수학 중2 하 답지를 올려요. 이 글 하단 쪽에 올려두었으니 스크롤 … 학교 생활은 잘 하고 있나요? 주아키랍니다 오늘 요청했던 답지인 원리해설 중학수학 중2 하 답지를 올려요. 이 글 하단 쪽에 올려두었으니 스크롤 쭈욱~ 내리시고 찾아가시면 됩니다. >_< 제가 올려드리는 자료..
- Table of Contents:
원리해설 수학 중2-하 답지 (2019)
- Article author: dapjibook.com
- Reviews from users: 33800 Ratings
- Top rated: 4.1
- Lowest rated: 1
- Summary of article content: Articles about 원리해설 수학 중2-하 답지 (2019) 원리해설 수학 중2-하 답지 (2019). 정답 2021. 1. 4. 11:16. 초등학교, 중학교때는 수학여행이 참 기다려졌습니다. 소풍도 기다려졌습니다. 수학여행 전날에는 정말로 … …
- Most searched keywords: Whether you are looking for 원리해설 수학 중2-하 답지 (2019) 원리해설 수학 중2-하 답지 (2019). 정답 2021. 1. 4. 11:16. 초등학교, 중학교때는 수학여행이 참 기다려졌습니다. 소풍도 기다려졌습니다. 수학여행 전날에는 정말로 … 초등학교, 중학교때는 수학여행이 참 기다려졌습니다. 소풍도 기다려졌습니다. 수학여행 전날에는 정말로 잠을 못잘 정도로 기대를 하곤 했습니다. 하지만 지금 돌이켜보면 수학여행때 입을 옷이 제대로 없어서 걱..
- Table of Contents:
지금보기 9+ 원리 해설 중학 수학 2 2 답지 고마워하다 – Công lý & Pháp Luật
- Article author: globalizethis.org
- Reviews from users: 13910 Ratings
- Top rated: 3.9
- Lowest rated: 1
- Summary of article content: Articles about 지금보기 9+ 원리 해설 중학 수학 2 2 답지 고마워하다 – Công lý & Pháp Luật … 해설 수학 중2하 답지 정답. 작가: caac.tistory.com; 게시: 19 days ago; 평가: 1. (1409 Rating); 최고 평점: 4. 최저 등급: 3. 설명: More : Source … …
- Most searched keywords: Whether you are looking for 지금보기 9+ 원리 해설 중학 수학 2 2 답지 고마워하다 – Công lý & Pháp Luật … 해설 수학 중2하 답지 정답. 작가: caac.tistory.com; 게시: 19 days ago; 평가: 1. (1409 Rating); 최고 평점: 4. 최저 등급: 3. 설명: More : Source … 지금보기 9+ 원리 해설 중학 수학 2 2 답지 고마워하다 – Công lý & Pháp Luật
- Table of Contents:
12021 에이급 원리해설 수학 중2하 답지 정답
2원리해설 중학수학 중2 하 답지 무료다운 – ZUAKI’s info
3원리해설 수학 중2-하 답지 (2019)
4에이급 원리해설 정답 – mathpeak 매쓰피크
5에이급 원리해설 중학 수학 2-2 정답다운 – 리버풀게임
6원리해설수학 – 알라딘
7이 분야에 34개의 상품이 있습니다 – 알라딘
8에이급 원리해설 살펴보기 – 특징과 활용방법 – YouTube
9개념원리 중2-2 하 답지(2021)
Tham khảo thêm
에이급 원리해설 정답
- Article author: mathpeak.tistory.com
- Reviews from users: 4557 Ratings
- Top rated: 4.4
- Lowest rated: 1
- Summary of article content: Articles about 에이급 원리해설 정답 중1-상 중1-하 중2-상 중2-하 중3-상 중3-하. …
- Most searched keywords: Whether you are looking for 에이급 원리해설 정답 중1-상 중1-하 중2-상 중2-하 중3-상 중3-하. 중1-상 중1-하 중2-상 중2-하 중3-상 중3-하
피크에듀학원 도곡본원 (매쓰피크)
서울시 강남구 언주로 120 302호
- Table of Contents:
에이급 원리해설 정답
티스토리툴바
알라딘
- Article author: www.aladin.co.kr
- Reviews from users: 19172 Ratings
- Top rated: 4.9
- Lowest rated: 1
- Summary of article content: Articles about 알라딘 에이급 원리해설 수학 중2-하 (2022년용) – 중학 에이급 원리해설 (2022년) · 에이급출판사 편집부 (지은이) · 에이급출판사 | 2019년 05월 | 2019년 05월 · 12,600원 (10% … …
- Most searched keywords: Whether you are looking for 알라딘 에이급 원리해설 수학 중2-하 (2022년용) – 중학 에이급 원리해설 (2022년) · 에이급출판사 편집부 (지은이) · 에이급출판사 | 2019년 05월 | 2019년 05월 · 12,600원 (10% …
- Table of Contents:
개념원리 중2-2 하 답지(2021)
- Article author: answer-storage.tistory.com
- Reviews from users: 18686 Ratings
- Top rated: 4.3
- Lowest rated: 1
- Summary of article content: Articles about 개념원리 중2-2 하 답지(2021) 답지를 찾으시나요? 빠른답지와 해설답지를. 따로 올려드리고 있습니다. 필요에 따라 다운받아 사용 … …
- Most searched keywords: Whether you are looking for 개념원리 중2-2 하 답지(2021) 답지를 찾으시나요? 빠른답지와 해설답지를. 따로 올려드리고 있습니다. 필요에 따라 다운받아 사용 … 개념원리 중2-2 하 답지(2021) 답지를 찾으시나요? 빠른답지와 해설답지를 따로 올려드리고 있습니다. 필요에 따라 다운받아 사용하시면 됩니다. 도움되셨다면 공감♥ 꾹~한번 눌러주시면 더 좋은 자료로 보답드..
- Table of Contents:
관련글
댓글0
공지사항
최근글
인기글
최근댓글
태그
전체 방문자
에이급 원리해설 수학 중 2 – 상 답지 (2019)
- Article author: dabji.org
- Reviews from users: 24901 Ratings
- Top rated: 4.8
- Lowest rated: 1
- Summary of article content: Articles about 에이급 원리해설 수학 중 2 – 상 답지 (2019) POWERED BY TISTORY. 검색. 에이급출판사. 에이급 원리해설 수학 중 2 – 상 답지 (2019). 2020. 8. 13. 12:01. 반응형. 더보기. 빠른 정답 . …
- Most searched keywords: Whether you are looking for 에이급 원리해설 수학 중 2 – 상 답지 (2019) POWERED BY TISTORY. 검색. 에이급출판사. 에이급 원리해설 수학 중 2 – 상 답지 (2019). 2020. 8. 13. 12:01. 반응형. 더보기. 빠른 정답 . 더보기 빠른 정답 ………………………………………………. 2~7 Ⅰ. 유리수와 순환소수 1. 유리수와 순환소수 …………………………………….. 8 1. 단항식의 계산 ……………
- Table of Contents:
See more articles in the same category here: toplist.Experience-Porthcawl.com/blog.
2021 에이급 원리해설 수학 중2하 답지 정답
반응형
에이급 원리해설 수학 중 2-2 답지 정답입니다 .
저작권은 해당 출판사에 있습니다.
에이급 원리해설 수학 중2하 답지는
아래로 내리면 있습니다. ^^
[ 표지 확인하세요! ]에이급 원리해설 수학 중2하 답지
첫 번째 이야기 : 책 소개
기본에서 심화까지 한 권으로 해결되는 새로운 중학수학의 기본서입니다. 꼭 알아야 할 원리를 한 눈에 볼 수 있고 빠짐없는 유형과 풍부한 문항들을 담았습니다. 수학적 사고력을 키우는 심층적인 문제들도 수록하였습니다. 무턱대고 앞만 보고 달리는 선행학습이 아닌 내신과 심화를 같이 공부하면서 원리부터 꿰뚫어서 수학을 한 번에 잡을 수 있도록 준비했습니다.
두 번째 이야기 : 출판사 서평
각 단원에서 알아야 할 원리를 자세하고 명쾌하게 정리하였습니다. 향후 학습을 위해 더 알면 좋은 개념이나 심화개념들도 한 발 앞서 공부 할 수 있도록 하였습니다. 출제율이 높은 문제, 실전 내신대비 문제, 변별력 1%까지 잡는 실력문제들로 이어지는 단계별 구성으로 기초부터 고난도까지 실력을 빠르고 강하게 상승시키도록 하였습니다. 집중적으로 계산력을 향상시킬 수 있는 문제들과 중요 원리를 한 눈에 정리하는 원리특강을 수록하였습니다.
반드시 답안 확인 및 오답 체크에만 사용하세요!
에이급 원리해설 수학 중2하 답지는
아래 있으니 다운받아 확인하세요.^^
PDF 파일이므로 PDF 뷰어는 따로 받으시고
답지를 받아 사용하시기 바랍니다.
도움이 되셨으면 ♥에 도장 꾹! 해주시면
블로거에게 많은 도움이 됩니다.
원리해설 중2하 빠른정답.pdf 1.13MB 원리해설 중2하 정답및해설 part.1.pdf 6.91MB 원리해설 중2하 정답및해설 part.2.pdf 7.19MB
반응형
원리해설 수학 중2-하 답지 (2019)
초등학교, 중학교때는 수학여행이 참 기다려졌습니다. 소풍도 기다려졌습니다. 수학여행 전날에는 정말로 잠을 못잘 정도로 기대를 하곤 했습니다. 하지만 지금 돌이켜보면 수학여행때 입을 옷이 제대로 없어서 걱정을 했던 기억도 있습니다. 아무튼 학생때는 참 아무것도 모르고 그냥 기대했던 것 같습니다. 그때가 어쩌면 가장 좋은 시기가 아니었나 싶기도 합니다. 지금은 걱정이 많은 삶을 살고 있으니까요. 아래에 원리해설 수학 중2-하 답지가 있습니다.
물론 그때의 순수함이 참 그립기도 합니다. 하지만 저는 그때로 돌아가라고 하면 그때로 돌아가기 보다는 그냥 지금의 삶이 더 좋습니다. 안정적인 삶을 사는 것이 더 행복하기 때문입니다. 또 취업난을 겪어야하고 불안한 삶을 살아야 한다는 것이 조금은 싫습니다. 그래도 다시 시작한다면 더 잘해낼 자신이 있지요. 아무튼 지금 열심히 해야지 나중에 미래에 내가 편안할수 있다는 것은 확실합니다.
위를 보면 원리해설 수학 중2-하 답지가 있습니다. 미래에 행복해진다는 얘기는 지금의 생활을 탈피하는 것이 아닙니다. 그냥 지금의 삶 그대로를 영위하면서 걱정을 덜한 삶을 살게 되는 것이죠. 하지만 그 걱정은 다른 걱정들로 바뀌게 되기는 합니다. 결혼, 육아 등등이겠지요. 아무튼 지금 열심히 하는 것이 가장 중요합니다. 답지는 구글 드라이브로 연결되어 있습니다. 열심히 공부하세요.
에이급 원리해설 수학 중 2 – 상 답지 (2019)
빠른 정답 ………………………………………………. 2~7 Ⅰ. 유리수와 순환소수 1. 유리수와 순환소수 …………………………………….. 8 1. 단항식의 계산 …………………………………………. 15 Ⅱ. 식의 계산 Ⅲ. 부등식 Ⅳ. 연립방정식 1. 일차부등식 ………………………………………………. 30 1. 연립방정식 ………………………………………………. 43 2. 연립방정식의 활용 …………………………………. 59 Ⅴ. 일차함수 1. 일차함수와 그 그래프 …………………………….. 71 2. 일차함수와 일차방정식의 관계 ……………… 83 원리해설 중2-1빠른정답_3.indd 1 18. 10. 22. 오후 2:10 Ⅰ 유리수와 순환소수 1. 유리수와 순환소수 Ⅱ 식의 계산 1. 식의 계산 1 유리수와 순환소수 1 단항식의 계산 원리확인 기본문제 8~16쪽 원리확인 기본문제 30~36쪽 ⑵ ⑶ &5^3 5^3 1000 0.375 ⑵ ⑶ x^2^4 a^2^1 x^2^6y^2^1 개 1 4 ⑴ &5 5 ⑴ 6 &284 9 ⑴ 7/3 10 12 ⑤ 479 495 개 &28 01 ④ 04 08 12 &6 13 ⑴ 15 ⑤ 3 19 ④ 23 ⑤ 27 &100 29 ㈎ , 30 33 ⑴ &11 36 38 ⑴ &24 < 01 ①, ④ 05 09 13 개 &222 &5 &7 , 17 , &6 21 &8 25 2 ④, ⑤ 3 , , , ⑵ 1.01^.2^. 0.3^. 0.3^.42^. 7 ③ 0.416^. ⑶ 10.018^. 0.1^.2^. 8 ② ⑵ 1489 , 3300 , ⑶ , , 3127 990 -1.8 0 1.64^. 13 ④ 8 10.0^.1^. 11 ①, ③ 14 ㄹ, ㄷ, ㄱ, ㅁ, ㄴ 15 16 ⑴ ⑵ ⑶ 0.3^.69^. 0.14^.2^. 0.52^. 1단계 Cstep 촘촘유형 17~22쪽 02 ②, ③ 05 ② 09 , , 03 06 ㄱ, ㄴ, ㄷ 07 10 a=2 b=6 개 c=0.06 11 ① 4 , a=56 ⑵ b=5 , 0.3^. &18 , &21 , ⑶ 4.0^.54^. 16 054 20 ② &2 1.07^.2^. 17 72 21 ④ &3 14 ④ 18 22 ③ &6 25 ① 26 ②, ④ 24 25 28 ①, ④ 6 , ㈏ 8/9 0.2^.1^. ⑵ pai/4 0.35 31 ②, ④ ⑶ 32 34 ③ &99 35 ② , < , , , > ⑵ 37 &1 2 3 4 5 39 40 1.0^.1^. 0.2^. &0.00^.2^. &15 2단계 Bstep 탄탄내신 23~26쪽 02 06 &56 10 ② &180 14 ①, ⑤ 18 22 &77 26 03 07 &4 11 ④ &3 15 ③ 19 &0.132^. 23 &0.01 04 개 08 &1 12 ③ 16 416 &0.83^.0^. 20 &0.12^. 24 P(16/9) 9 12 2.34^.6^. -2 &0.0001^. 3단계 Astep 만점승승장구 1 개 2 개 &15 &11 3 &1.2^. 4 &76^. 빠른 정답 1 ② 3 ⑴ 2 ⑴ ⑷ a^8 ⑵ ⑶ ⑷ 4 4 ⑴ 2 ⑵ 4 ⑶ 3 ⑷ 7^6 , 1 x^2 a^6 a^5 a=2 8 ⑴ b=3 ⑵ ⑶ 5 , , 6 2 7 7 1 a^2 a^3+ ⑷ 6 9 90x^1^1 16/3&x^5&y^4 30a^4&b^4 -14a^4&b^7 &24x^3&y^2 10 ⑴ 11 &4ab^3 12 ⑴ – 16 x^4&y^2 ⑵ ⑶ ⑷ 4/3&x^3&y^4 2a^5 b – 16b^3 3a^2 ⑵ ⑶ ⑷ 5x^4 2y 9/2&xy^5 25b^4 2a^2 2a^4 b 37쪽 1 ⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ x^6 a^2 2 ⑴ x^7 ⑽ a^5 x^8 ⑾ k^1^1 ⑿ x^6 ⒀ a^8 ⒁ -x^3&y^3 ⒂ ⒃ a^1^2&b^8 – 32 b^20 ⑵ 1 x^3 ⑶ 1 b^7 a^2 ⑷ 1 ⑸ -1 -21x^3&y^4 -6a^6&b^6 1/2&x^2&y^9 -4/3&a^2 a^5 3x^7 2y^2 ⑹ – 3 ⑴ y^2 2x^3 ⑵ ⑶ ⑷ 3a 16/3&x^2 -15/2&x^3&y^7 5y^3 2x^2 1단계 Cstep 촘촘유형 , a=2 b=6 01 05 ④ &32 09 13 &3 16 ⑤ 19 ③ 23 &9 26 8 29 38~42쪽 &2^3^6&`bit 04 08 12 &27 15 ② &10 &7 a^1^1&b^1^4 02 06 10 &2 17 ⑤ 20 &9 24 ① 03 07 &9 11 ④ &32 14 18 &13 21 ⑤ 25 ⑴ , a=1 b=8 22 -9x^6&y^7 27 ⑴ ⑵ 1/2&x^3&y^3 30 ④ 27 2xy^3 – 31 ④ &4 ⑵ – 2x z^2 64/3 1/16 28 32 36 27쪽 20x^2&y^2 -2/5&a^2&b^2 9/8&a 36ab^5 35 33 37 -6 16ab 34 38 ab^5 5 원리해설 중2-1빠른정답_3.indd 2 18. 10. 22. 오후 2:10 빠른 정답2 다항식의 계산 원리확인 기본문제 2 ⑵ x-1 6 ⑵ 1 &5 3 ⑴ 4 ⑴ ⑶ 5 ⑴ ⑷ 6 ⑴ 7 9 x^2&+x-6 -2a^2&-3ab ⑵ -2a^2&b+2ab^2&+10ab -x^2&+2x-8 ⑷ 3x^2&y-3xy+3x x^4&y-3x^3&y^2&+x^2&y^3 ⑶ 4xy^2&-7 8x+5y-2 ⑵ -18xy^2&-12 ⑶ -8x^2&+16x-4 ⑷ x^2&-6xy 6x^2&-xy 8 ⑴ -22a^3&+30a ⑵ -8a+18b^2 8a-b 9a-8b &14a^3&b-9a^2&b^2 -5x+3y+1 10 ⑴ ⑵ r=l/pai-a 11 14 y=-1/4&x+1/2 15 &1/4 &3 a= bf~ b-f~ 12 &59/7 13 &8 1단계 Cstep 촘촘유형 52~57쪽 01 ⑴ ⑵ ⑶ ⑷ 5x+4y -7x-5x 03 ① 7/4&x-10y 1/4&x 05 ③ &14 02 06 08 10 &7x-22y+3 &6a-3b+4 11 ① &3x+2y 13 14 ② -9/4 16 ① 17 -43a+22b 18 20 22 25 28 ⑴ ① : -2 &6x^2-6xy+30x 26 ② : -24x^6y^4+8x^3y^2 04 ④ 07 09 12 ⑴ 15 19 21 ④ 23 27 &8x^2-3x &2x^2+4x-6 ⑵ 6x^2-2x+3 6 &10x^2-14x -9x^2+12x+15y 24 &15 -4x^3y-1/3&x+10y^4 -20 &4x+5y ③ : ⑵ &6&ab+9/2&b 40a^2 56a 35a^2-5a 30 (cid:20) 75a^2+51a (cid:20) 29 31 37 &6a^2-3/4&ab+3/2&b^2 &17x-7y 32 33 ⑤ -15x-3y+2 34 35 y=13/21&x-2/7 36 x-3 38 -1 3 1/2 -9 2단계 Bstep 탄탄내신 01 ③ 02 ④ 03 ④ 04 07 , 1 = 08 9^10 1 A^2 &12 &27^10=A^3 &21 05 a^2 09 ④ 3b 06 &128 10 &48 44~51쪽 16 8 6 3 2 3 3 -2 17 11 13 ⑴ , -1 12 ⑴ , , ⑵ 16 , , 배 ⑵ 배 14 ① 64 15 -90x^1^1y^9 18 20 -5/6&a-5/4&b 21 &20/3&paix^6y^9 &4/15 19 22 ⑴ a^2+11a-1 ⑵ &2x-3y 11 23 10x^3-2x^2+x-4 13ab^2-9a^2b 24 x^3y^4-x^2+2 25 26 ⑴ ⑵ &9/2&b^3-27/8&a^2b^2 27 -19/4 50/7 20/11 -1 3단계 Astep 만점승승장구 62~63쪽 1 3 ⑴ &12 4 a^2 6 ⑴ 3b^2 2 ⑴ 번 ⑵ , 6 ⑵ a ⑵ , 2 ⑶ &3 ⑷ 4 ≥ > ⑵ ≥ 5 ⑴ -11≤3x-5<4 -3<3-2x≤7 ⑵ 66~72쪽 x≥3 (cid:20) (cid:20) x<1/2 (cid:14)(cid:20) (cid:14)(cid:20) (cid:18) (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) x<-3 (cid:18) (cid:19) (cid:18) (cid:19) 6 ⑴ ⑶ ⑷ (cid:14)(cid:20) (cid:14)(cid:20) x≥1 (cid:18) (cid:18) ⑵ ⑶ ⑷ x≤1 x<1/2 7 ⑴ ⑵ x≤-23/2 ⑶ x≤-10/9 x>-9 x≥7/10 x≥-4 8 ⑴ 해는 모든 수 ⑵ 해가 없다. 10 ⑴ 11 -2
5 ⑽ x>3 x≥-1 x>4 x>-1 y≤2 a>-5/2 73쪽 빠른 정답 원리해설 중2-1빠른정답_3.indd 3 18. 10. 22. 오후 4:13 2 ⑴ ⑵ ⑶ x<1/2 ⑸ x>12/5 ⑹ x>-5 x<-10/3 ⑺ ⑻ x≤2/5 x<-5 x>2 x≤43 x<-22 ⑾ ⑷ ⑼ ⑽ x>-2/5 x≥-5 1단계 Cstep 촘촘유형 06 ④ 10 ④ 14 ②, ④ 18 ④ ⑵ 3x+6≤11 02 개 3 08 ② 12 03 ①, ④ 05 ③ 09 ② 13 ⑴ 01 ③, ⑤ 04 07 ③, ④ 11 ⑤ ⑵ 15 ② 19 ② ⑶ y<-5 -11-27/4 27 x≤1 29 x<3 30 -2 -8 -18/7 19/3 32 14≤a<17 -20 19 m>0 20 n<0 l<0 21 m<0 n>0 -24/5 22 &81/25 -15≤b≤-3 시 분 23 오후 2 20 y=1/3&x+5/3 24 ⑴ ⑵ y=4x+2 50 3단계 Astep 만점승승장구 1 제 , , 사분면 1 3 4 , P(13/4 0) 3 6 13/20 8 ⑴ 7 &8 , , y=4x(0 4 10 1 2 01 ④ 04 제 1 2 07 10 8 14 ⑴ 15 12 19 -1 23 27 6 31 ③ -2 02 , , 사분면 11/4 03 -3/4 05 2 3 , 08 11 ④ a=3 6 12 ⑤ b=-2 ⑵ 16 6 20 24 ① -1 28 32 3 12 3 21 25 11 -5 7 29 33 5 a≠-8/3, b=2 a=-8/3, b≠2 17 18 , 06 09 12 13 -2 3 -2) ^(1/2 22 26 5 30 ②, ③ y=-1 34 2 184~187쪽 06 09 &-22 -1 12 2/3 11 ③ 14 , 16 18 20 1 13/3 y=-7/4&x y=-3/2&x+9 y=-1/2&x+2 , , 13 -1 1/2 0 , 15 (-2 -2) 또는 17 -2/3 19 2/3 2/3≤a≤3 ⑵ 21 ⑴ 또는 &9/4 -7 a≥9/4 a≤-4/5 22 분 후 15/4 23 ⑴ 오후 시 분 ⑵ 2 20 2`km Ⅴ 일차함수 2. 일차함수와 일차방정식의 관계 3단계 Astep 만점승승장구 188~189쪽 1 일차함수와 일차방정식의 관계 원리확인 기본문제 174~178쪽 -5/2 67/2 41/32 2 , &144/25 , 4 5 a=-1/2 b=2 3 -2 1 6 -2≥ 1000x-10x=1010.≥9898… 1000x-10x =1088 따라서 가장 편리한 식은 1000x-10x이다. (cid:9000) ③ 8 이해쏙쏙 술술풀이 1.6H4= 164-16 90 =;;¡9¢0•;;, 8=;1*;, 10.H0H1= 1001-10 99 =;;ª9ª9¡;;이므로 구하는 수는 -1.8, 0, 1.6H4, 8, 10.H0H1이다. (cid:9000) -1.8, 0, 1.6H4, 8, 10.H0H1 11 ② 모든 순환소수는 유리수이다. ④ 순환하지 않는 무한소수(무리수)는 유리수가 아니 ⑤ 정수가 아닌 유리수는 유한소수나 순환하는 무한소 다. 수로 나타낼 수 있다. (cid:9000) ①, ③ (cid:9000) ⑤ (cid:9000) ④ 13 기약분수의 분모에 소인수 2와 5가 없는 분수를 찾는 다. ① ;6!;= ③ ;2£2;= ⑤ ;3!5!;= 1 2_3 3 2_11 11 5_7 ② ;1¶5;= ④ ;2∞1;= 7 3_5 5 3_7 14 ㄱ. 0.24H3H5=0.2435¯35… ㄴ. 0.2435 ㄷ. 0.2H43H5=0.2435¯43… ㄹ. 0.243H5=0.2435¯55… ㅁ. 0.H243H5=0.2435¯24… 0.243H5>0.2H43H5>0.24H3H5>0.H243H5>0.2435 (010~093)13원리2-1 정답.ps 2018.10.22 4:2 PM 페이지9 MAC6 본문 8~18쪽 … 50`% … 20`% … 30`% (cid:9000) 28 배점 50`% 20`% 30`% 따라서 ㄹ, ㄷ, ㄱ, ㅁ, ㄴ이다. 01 A:정수가 아닌 유리수, B:0, 음의 정수 (cid:9000) ④ (cid:9000) ㄹ, ㄷ, ㄱ, ㅁ, ㄴ 02 ① 정수 ④ ;;¡5º;;=2이므로 자연수 15 1.H2H3+0.5H3-0.H7H9=;;¡9™9™;;+;9$0*;-;9&9(;=;9$9#;+;9$0*; ⑤ 유리수가 아닌 수 (cid:9000) ②, ③ 1.H2H3+0.5H3-0.H7H9=;9(9%0*;=;4$9&5( 03 ;5£0;= 3 2_52 = 3_2 2_52_2 a=2, b=6, c=0.06 =;10^0;=0.06이므로 (cid:9000) a=2, b=6, c=0.06 (cid:9000) ;4$9&5( 04 42 2_53_7 = 6 2_53 = 6_22 2_53_22 =;10@0$0;=0.024 I 유 리 수 와 순 환 소 수 16 ⑴ ;1¢1¡1;= =;9#9^9(;=0.H36H9 41_9 111_9 47_3 330_3 ⑵ ;3¢3¶0;= =;9!9$0!;에서 분모에 9가 2개이므 로 순환마디의 숫자가 2개이다. (전체의 수)=¯141+¯1=¯142 Z21C12C 순환하지 않는 수 ∴∴ ;3¢3¶0;=0.1H4H2 ⑶ ;9$0&;에서 분모에 9가 1개이므로 순환마디의 숫자가 1개이다. ¯47+4=¯51에서 순환하지 않는 부분의 수가 4에서 5로 바뀌었으므로 그 차인 1을 더해준다. (전체의 수)=¯51+1=¯52 Z111C 순환하지 않는 수 ∴∴ ;9$0&;=0.5H2 1단계 CStep 02 ②, ③ 05 ② 09 18 01 ④ 04 28 08 6개 12 a=56, b=5 ⑶ 72, 1.0H7H2 14 ④ 18 6 17 3 03 a=2, b=6, c=0.06 06 ㄱ, ㄴ, ㄷ 07 4개 10 21 11 ① 13 ⑴ 3, 0.H3 ⑵ 054, 4.H05H4 15 ⑤ 19 ④ 16 2 20 ② 24 ;;™6∞;; 28 ①, ④ 30 11 21 ④ 25 ① 22 ③ 23 ⑤ 26 ②, ④ 27 100 p 4 29 ㈎ ;9*;, 0.H2H1, 0.35 ㈏ 31 ②, ④ 34 ③ 37 1, 2, 3, 4, 5 39 0.0H0H2 32 99 35 ② 40 15 33 ⑴ < ⑵ > ⑶ < 36 24 38 ⑴ 1.H0H1 ⑵ 0.H2 ∴∴ a=4, b=1000, c=0.024 ∴∴ a+bc=28 분수를 유한소수로 고치는 과정 나타내기 채점 기준 a, b, c의 값 구하기 a+bc의 값 구하기 7 05 ① ;3¶2;= (유한소수) 25 ② -;6¶0;=- 7 22_3_5 (순환소수) ③ -;;¢2ª2∞;;=-;;¢2∞;; (유한소수) 3 2_5 (유한소수) ④ ;2§1£0;=;1£0;= 2_7 52 ⑤ ;2!5$;= ㄱ. ;4@5!;=;1¶5;= 7 3_5 = ㄷ. ㄴ. ;3!7@8^;=;3!; 12 32_52 27 32_52_15 3_11 23_3_53 ㅁ. ㄹ. ㅂ. 273 22_3_5_7 = 22 3_52 1 53 11 23_53 13 22_5 = = (cid:9000) ⑴ 0.H36H9 ⑵ 0.1H4H2 ⑶ 0.5H2 (유한소수) (cid:9000) ② 06 분모의 소인수에 2나 5 이외의 소인수가 있는 기약분 p. 17~ 22 수를 찾는다. 따라서 무한소수인 것은 ㄱ, ㄴ, ㄷ이다. (cid:9000) ㄱ, ㄴ, ㄷ 07 분자가 모두 1이므로 분모의 소인수가 2나 5뿐인 것을 찾는다. Ⅰ. 유리수와 순환소수 9 (010~093)13원리2-1 정답.ps 2018.10.22 4:2 PM 페이지10 MAC6 이해쏙쏙술술풀이 1 2_5 ;1¡0;= 모두 4개이다. 1 , ;1¡6;= , ;2¡0;= 24 1 22_5 1 , ;2¡5;= 로 52 (cid:9000) 4개 08 ;5Å6; = 를 유한소수로 나타낼 수 있으므로 a는 a 23_7 7의 배수이어야 한다. 따라서 조건을 만족하는 a는 14, 21, 28, 35, 42, 49 (cid:9000) 6개 의 6개이다. 09 _a= 2 32_5 4 2_32_5 있으므로 a는 9의 배수이어야 한다. 따라서 조건을 만족하는 a의 값은 18이다. _a를 유한소수로 나타낼 수 10 ;7!5!;= , ;11(2;= 11 3_52 이므로 두 분수에 자연 9 24_7 수 A를 곱하여 모두 유한소수가 되도록 하려면 A는 3과 7의 공배수이어야 한다. 따라서 가장 작은 자연수 A는 21이다. (cid:9000) 21 11 48=24_3이므로 a는 3의 배수이다. a=3이므로 ;b!;에서 b=16이다. ;4£8;=;1¡6;= ∴∴ a+b=3+16=19 (cid:9000) ① 12 ;14A0; = a 22_5_7 를 유한소수로 나타낼 수 있으므로 a는 7의 배수이고 기약분수로 나타내면 ;b@;이므로 a는 8의 배수이다. a는 56의 배수이고 40≥1100x= 1201.888… 900x=10817 ∴∴ x=;:!9)0*0!:&; 따라서 가장 편리한 식은 1000x-100x이다. (cid:9000) ④ 20 x=6.35959… ……㉠ ㉠의 양변에 1000을 곱하면 1000x=6359.5959… ……㉡ ㉠의 양변에 10을 곱하면 10x=63.5959… ……㉢ ㉡-㉢을 하면 990x=6296 ∴∴ x=;;§9™9ª0§;;=;;£4¡9¢5•;; 21 ① 17.H2= 172-17 9 ② 2.3H4= 234-23 90 15 ① ;3!;=0.333…=0.H3 ③ 0.H32H6=;9#9@9^; ⑤ 0.H43H7=;9$9#9&; (cid:9000) ④ (010~093)13원리2-1 정답.ps 2018.10.22 4:2 PM 페이지11 MAC6 22 ③ 0.01H1= 11-1 900 =;9¡0º0;=;9¡0; 23 ⑤ 1000x-10x의 값이 정수이다. 24 4+0.1+0.06+0.006+0.0006+… 416-41 90 =;;£9¶0∞;;=;;™6∞;; =4.1H6= (cid:9000) ③ (cid:9000) ⑤ (cid:9000) ;;™6∞;; 25 기약분수로 나타낸 다음 분모의 소인수에 2나 5 이외 의 소인수가 있는 것을 찾는다. ① ;4¶2;=;6!;= ② ;4%4%;=;4%;= ③ ;6@0!;=;2¶0;= ④ ;7ª2;=;8!;= 5 22 1 23 1 2_3 7 22_5 1 52 ⑤ ;7£5;=;2¡5;= 본문 18~22쪽 32 0.1H3H6=;9!9#0%;=;2£2;= 3 2_11 이므로 x는 11의 배수이 어야 한다. 따라서 가장 큰 두 자리의 자연수는 99이다. (cid:9000) 99 33 ⑴ ;8#;=0.375, 0.37H5=0.37555… ∴∴ ;8#;<0.37H5 ⑵ 0.5H4=0.5444… ∴∴ 0.5H4>0.541 ⑶ 0.H12H9=0.129129…, 0.1H2H9=0.12929… ∴∴ 0.H12H9<0.1H2H9 (cid:9000) ⑴ < ⑵ > ⑶ < I 유 리 수 와 순 환 소 수 (cid:9000) ① 34 ② 0.1955… ④ 0.195195… ③ 0.19595… ⑤ 0.19501950… (cid:9000) ③ (cid:9000) ② 26 ;18A0; = a 22_32_5 가 순환소수가 되려면 기약분수로 나타내었을 때 분모에 2 또는 5 이외의 소인수가 있어 야 하므로 a는 9의 배수가 아니면 된다. (cid:9000) ②, ④ 35 1.6888…과 1.74 사이의 수를 찾으면 된다. ① 1.6868… ② 1.7 ③ 1.777… ④ 1.744… ⑤ 1.6 27 기약분수로 나타내었을 때, 분모의 소인수에 2와 5가 없어야 하므로 6_a 22_5_7 = 3_a 2_5_7 에서 a는 10 의 배수이어야 한다. 0≥1110x=1128.3535… 1990x=2807 ③ 0.47˘47…>0.47˘1 ④ 0.H4H7=;9$9&;이므로 ;9$0&;>0.H4H7 ∴∴ x=;;™9•9º0¶;; 따라서 가장 편리한 식은 1000x-10x이다. (cid:9000) ② ⑤ 0.H1H0=;9!9);이고 ;1¡1;=;9ª9;이므로 0.H1H0>;1¡1; (cid:9000) ③ 16 윤서는 분자를 제대로 보았고, 재민이는 분모를 제대 “(단, a, b는 한 자리의 자연수) 로 보았다. 어떤 기약분수를 A라고 하면 I 유 리 수 와 순 환 소 수 11 ab-a 90 0.Ha= ;9A;, 0.aHb= 14-1 90 =;9!0#; ① 0.1H4= ② 0.H53H6=;9%9#9^; ③ 1.0H1H3= 1013-10 990 =;;¡9º9º0£;; ⑤ -1.H36H9=-;;¡9£9§9•;;=-;1!1%1@; 12 어떤 순환소수의 분모가 900이 되도록 나타낸다. = = (cid:8641)_2 450_2 (cid:8641)_2 (cid:8641) 450 900 따라서 이 순환소수는 a1a2…an.b1b2Hb3의 꼴이다. ① 소수점 아래 셋째 자리부터 순환마디가 시작된다. ② 순환마디의 숫자의 개수는 1개이다. ③ 1000x=a1a2…anb1b2b3.b3b3b3… ->≥1100x= a1a2…anb1≥b2.b3b3b3… 900x=a1a2…anb1b2b3-a1a2…anb1b2 ④ 소수점 아래 순환하지 않는 숫자의 개수는 2개이 다. ⑤ ;4!5$0#;=0.31H7 13 분수가 순환소수가 되려면 기약분수의 분모에 2나 5 이외 의 소인수가 있어야 한다. 7 22_a 분수 이 순환소수가 되려면 기약분수로 나타내 었을 때 분모에 2나 5 이외의 소인수가 있어야 하고, 분자에 7이 있으므로 a는 3, 6, 9, 11, 12, 13, 15의 7 (cid:9000) 7개 개이다. 순환하지 않는 무한소수는 유리수가 아니다. ①, ⑤ 정수가 아닌 유리수를 소수로 나타내면 유한소 수 또는 순환소수이다. (cid:9000) ①, ⑤ 14 15 소수를 분수로 고쳐 비교한다. ① 0.35˘35…<0.35˘5 ② 0.825˘25…<0.825˘825… 1.H23H4=;;¡9™9£9£;;=;1!1#1&;에서 A의 분자는 137이다. 0.3H1H5=;9#9!0@;=;1∞6™5;에서 A의 분모는 165이다. (cid:9000) ④ ∴∴ A=;1!6#5&;=0.8H3H0 채점 기준 기약분수의 분자 구하기 기약분수의 분모 구하기 처음 기약분수를 순환소수로 나타내기 1 17 된다. = x ;3”0; 2_3_5 3의 배수이어야 한다. 기약분수의 분모에 소인수가 2나 5뿐이어야 유한소수가 가 유한소수로 나타내어지려면 x는 또, 0.1H3< <0.4H6에서 ;9!0@; ;3”0; ∴∴ 4 b-8+8 a>b ˙k ⑵ ;1Å0; -2æ ;1ı0; -2의 양변에 2를 더하면 -2+2æ ;1Å0; 양변에 10을 곱하면 ;1ı0; -2+2 æ ˙k ;1Å0; ;1ı0; _10æ _10 aæb ;1ı0; ˙k ;1Å0; ⑶ -a+5<-b+5의 양변에서 5를 빼면 -a<-b -a+5-5<-b+5-5 양변에 -1을 곱하면 a>b ˙k ⑷ -4a+3…-4b+3의 양변에서 3을 빼면 -4a+3-3…-4b+3-3 양변을 -4로 나누면 aæb ˙k -4a…-4b (cid:9000) ⑴ > ⑵ æ ⑶ > ⑷ æ ⑴ ㉠_3을 하면 -6…3x<9 ……㉡ ㉡-5를 하면 -11…3x-5<4 ⑵ ㉠_(-2)를 하면 -6<-2x…4 ……㉢ ㉢+3을 하면 -3<3-2x…7 (cid:9000) ⑴ -11…3x-5<4 ⑵ -3<3-2x…7 5 ⑴ 2xæ6, xæ3 ⑵ 4x+3<5, 4x<5-3, 4x<2 ∴∴ x<;2!; ⑶ 5x-1<3x-7 5x-3x<-7+1 3 1 2 -3 (cid:9000) 3 4 -2…x<3 ……㉠ 30 이해쏙쏙 술술풀이 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지31 MAC6 6 ⑴ x…-6(x+1)+13, x…-6x-6+13 ∴∴ -2 4(2x+1) -1+10-2x>8x+4 -10x>-5 ∴∴ x<;2!; ⑶ ;3!;x-;6!;æ 2x+3 5 양변에 30을 곱하면 10x-5æ12x+18 -2xæ23 ∴∴ x…-;;™2£;; ⑷ 0.3xæ1.2x+1 양변에 10을 곱하면 3xæ12x+10 -9xæ10 ∴∴ x…-;;¡9º;; (cid:9000) ⑴ x…1 ⑵ x<;2!; ⑶ x…-;;™2£;; ⑷ x…-;;¡9º;; 7 ⑴ 1.3x+3>0.7x-2.4 양변에 10을 곱하면 13x+30>7x-24 6x>-54 ∴∴ x>-9 ⑵ 3{x-;2!;}…8x-5 3x-;2#;…8x-5, -5x…-;2&; ∴∴ xæ;1¶0; ⑶ ;3@;(x-1)+;6%;æ;2!;x-;2!; ;3@;x-;3@;+;6%;æ;2!;x-;2!; 양변에 6을 곱하면 4x-4+5æ3x-3 4x+1æ3x-3 ∴∴ xæ-4 (cid:9000) ⑴ x>-9 ⑵ xæ;1¶0; ⑶ xæ-4 8 ⑴ ;3!;(3x-3) ≥ ⑴ 2-4 ≥ ∴∴ -8<2a-3b<36 (cid:9000) ⑴ -2 7 -2-a 7 -2-a =-1에서 2+a=7 ∴∴ a=5 12 ax-5æ-x+3, (a+1)xæ8 가장 작은 해가 2이므로 xæ2 a+1>0이고 =2, 2a+2=8 ∴∴ a=3 8 a+1 III 부 등 식 (cid:9000) 5 (cid:9000) ④ p. 73 Ⅲ. 부등식 31 1 ⑴ x<6 ⑵ xæ3 ⑶ x…-1 ⑷ x>5 ⑸ x>3 ⑹ xæ-1 ⑺ x>4 ⑻ x>-1 ⑼ y…2 ⑽ a>-;2%; ⑾ x<;2!; 2 ⑴ x>;;¡5™;; ⑵ x>-5 ⑶ x<-;;¡3º;; ⑷ x…;5@; ⑸ x<-5 ⑹ x>2 ⑺ x…43 ⑻ x<-22 ⑵ 5x+1<2{;2%;x-1}, 5x+1<5x-2 ⑼ x>-;5@; ⑽ xæ-5 ≥ ≥ ≥ ≥ ≥ ≥ ≥ (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지32 MAC6 2 ⑴ 1- < x-4 2 x+3 3 양변에 6을 곱하면 6-3(x-4)<2(x+3), 6-3x+12<2x+6 (cid:9000) ⑴ x>;;¡5™;; ⑵ x>-5 ⑶ x<-;;¡3º;; (cid:9000) ⑷ x…;5@; ⑸ x<-5 ⑹ x>2 ⑺ x…43 (cid:9000) ⑻ x<-22 ⑼ x>-;5@; ⑽ xæ-5 이해쏙쏙술술풀이 1 ⑴ x-2<4, x<6 ⑵ x+3æ6, xæ3 ⑶ x+2…1, x…-1 ⑷ 2x>10, x>5 ⑸ -3x<-9, x>3 ⑹ 3x+7æ4, 3xæ-3, xæ-1 ⑺ 2x+3<4x-5, -2x<-8, x>4 ⑻ x-4<2x-3, -x<1, x>-1 ⑼ y+2æ5y-6, -4yæ-8, y…2 ⑽ -3a+5<10-a, -2a<5, a>-;2%; ⑾ 1-5x>3x-3, -8x>-4, x<;2!; (cid:9000) ⑴ x<6 ⑵ xæ3 ⑶ x…-1 ⑷ x>5 (cid:9000) ⑸ x>3 ⑹ xæ-1 ⑺ x>4 ⑻ x>-1 (cid:9000) ⑼ y…2 ⑽ a>-;2%; ⑾ x<;2!; -5x<-12 ∴∴ x>;;¡5™;; ⑵ 5x+1<8(x+2), 5x+1<8x+16 -3x<15 ∴∴ x>-5 ⑶ 2(x-3)>5x+4, 2x-6>5x+4 -3x>10 ∴∴ x<-;;¡3º;; ⑷ 0.7(x-3)…-1.3(x+1) 양변에 10을 곱하면 7(x-3)…-13(x+1), 7x-21…-13x-13 ⑸ 12-3(3x-2)<3-12x, 12-9x+6<3-12x 20x…8 ∴∴ x…;5@; 3x<-15 ∴∴ x<-5 3x-2 4 x+3 5 > ⑹ 양변에 20을 곱하면 5(3x-2)>4(x+3), 15x-10>4x+12 11x>22 ∴∴ x>2 ⑺ 2(x-3)…;3%;(x+5) 양변에 3을 곱하면 6(x-3)…5(x+5) 6x-18…5x+25 ∴∴ x…43 32 이해쏙쏙 술술풀이 ⑻ 0.3x-0.84>4(0.08x-0.1) 0.3x-0.84>0.32x-0.4 양변에 100을 곱하면 30x-84>32x-40 -2x>44 ∴∴ x<-22 2-x 2x-1 8 3 4x+7 6 - < ⑼ 양변에 24를 곱하면 3(2-x)-8(2x-1)<4(4x+7) 6-3x-16x+8<16x+28 ⑽ - …x- x+3 2 -35x<14 ∴∴ x>-;5@; 2(x-5) 3 3x-1 6 양변에 6을 곱하면 4(x-5)-(3x-1)…6x-3(x+3) 4x-20-3x+1…6x-3x-9 x-19…3x-9, -2x…10 ∴∴ xæ-5 1단계 CStep p. 74~ 78 02 3개 03 ①, ④ 01 ③, ⑤ 04 3x+6…11 05 ③ 09 ② 07 ③, ④ 13 ⑴ -11-;;™4¶;; 25 x…1 26 x<3 27 -2 22 ④, ⑤ 24 ③ 28 -8 29 -;;¡7•;; 31 14…a<17 33 -4…a<-2 30 ;;¡3ª;; 32 -2, …, æ를 사용하여 수 또는 식의 대소 관계를 나타낸 식을 찾는다. ① 다항식 ②, ④ 등식 (cid:9000) ③, ⑤ (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지33 MAC6 02 ㄴ. 등식 ㄷ. 다항식 ㅁ. 부등식이 아니다. 따라서 부등식인 것은 ㄱ, ㄹ, ㅂ의 3개이다. (cid:9000) 3개 03 ② x+5<13 ③ x…10 ⑤ 1287-x>600 04 「크지 않다.」는「작거나 같다.」와 같으므로 3x+6…11 (cid:9000) 3x+6…11 05 x=-1을 대입하여 부등식이 성립하는 것을 찾는다. ① -1+2<-1 (거짓) ② -(-1)+6<0 (거짓) ③ 3-2_(-1)…5 (참) ④ 3_(-1)-4æ0 (거짓) ⑤ -1-6>2_(-1)-1 (거짓) 06 x=1일 때, 2-3_1…-3 (거짓) x=2일 때, 2-3_2…-3 (참) x=3일 때, 2-3_3…-3 (참) x=4일 때, 2-3_4…-3 (참) x=5일 때, 2-3_5…-3 (참) 따라서 구하는 해는 2, 3, 4, 5의 4개이다. 07 5x-3=7, 5x=10 ∴∴ x=2 ① 2-1æ2_2 (거짓) ② 10-2<5 (거짓) ③ -2_2+1<0 (참) ④ 1+2_2>-2+3 (참) ⑤ 3_2-2…2+1 (거짓) 08 ① 3a<3b, 3a+2<3b+2 ② a÷{-;3!;}>b÷{-;3!;} ③ -a>-b, -a-8>-b-8 ④ -;5!;a>-;5!;b, 2-;5!;a>2-;5!;b 09 ① -4+a>-4+b ② -a<-b, 1-a<1-b ③ ;3@;a>;3@;b, ;3@;a+3>;3@;b+3 본문 73~75쪽 ④ a-7>b-7, a-7 10 > b-7 10 ⑤ a-3>b-3, ;4!;(a-3)>;4!;(b-3) (cid:9000) ② (cid:9000) ①, ④ 4a-3<4b-3 10 a-b ˙k ③ -7a>-7b < ④ ;5A; ;5B; ˙k ;5A; -a+;2!;>-b+;2!; 3-7a>3-7b ˙k ÷(-2)> ÷(-2) ;5B; ⑤ -;5$;a>-;5$;b ˙k -;5$;a-11>-;5$;b-11 (cid:9000) ④ (cid:9000) ⑤ III 부 등 식 (cid:9000) ③ 11 -1 ≥ ∴∴ -11≥ ∴∴ -3 ≥ ∴∴ -8<2a-b<14 ⑶ -8<2a-b<14 14 ① 9x-6=0 ˙k 미지수가 2개인 일차방정식 ② 2(x-2)-9…3, 2x-16…0 ③ x-7…x2, -x2+x-7…0 ˙k 일차부등식 ˙k 미지수의 차수가 2 Ⅲ. 부등식 33 ⑤ a+;4!;-4{b+;4!;} (cid:9000) ② (cid:9000) ⑴ -11x, -;2!;x-5>0 ② x+3x…2(2x+1), -2…0 ˙k 일차부등식이 아니다. ˙k 일차부등식 ③ 10-6x<11+5x, -11x-1<0 ④ x+x(x-1)æx2-2x, x+x2-xæx2-2x, ˙k 일차부등식 2xæ0 ˙k 일차부등식 ⑤ ;5$;x+1>x, -;5!;x+1>0 ˙k 일차부등식 16 2x+5…-x-4, 3x…-9 ∴∴ x…-3 17 3x-6…-2x+9, 5x…15 ∴∴ x…3 x의 값은 자연수이므로 x=1, 2, 3이고 그 합은 6이다. 채점 기준 일차부등식 풀기 조건에 맞는 해를 찾아 그 합 구하기 (cid:9000) ② (cid:9000) ③ … 50`% … 50`% (cid:9000) 6 배점 50`% 50`% 18 ① x+1>0 ∴∴ x>-1 ② 3-x -1 ③ 4x+1>3x ∴∴ x>-1 ④ 2x-2>3x-3, -x>-1 ∴∴ x<1 ⑤ 1+3x>-x-3, 4x>-4 ∴∴ x>-1 (cid:9000) ④ 19 -4x+11…-2x+3 -4x+2x…3-11 -2x…-8 ∴∴ xæ4 20 ① x-2x>2, -x>2 ∴∴ x<-2 ② 2x-6>-3x+4 5x>10 ∴∴ x>2 ∴∴ xæ2 ③ 4…2+x, -x…-2 34 이해쏙쏙 술술풀이 ④ 3+4x<5, 4x<2 ∴∴ x<;2!; ⑤ -5x+7æ6x-15 -11xæ-22 ∴∴ x…2 1 2 2 (cid:9000) ② 21 ⑴ 2x-3(x+1)…x+1, 2x-3x-3…x+1 -x-3…x+1, -2x…4 ∴∴ xæ-2 ⑵ 3(x-5)…4(2-x)+5, 3x-15…8-4x+5 3x-15…-4x+13, 7x…28 ∴∴ x…4 (cid:9000) ⑴ xæ-2 ⑵ x…4 22 x+2 3 ;6{; - æ;2!;x-;3!;의 양변에 6을 곱하면 2(x+2)-xæ3x-2, 2x+4-xæ3x-2 -2xæ-6 ∴∴ x…3 따라서 해가 될 수 없는 수는 4, 5이다. (cid:9000) ④, ⑤ 23 ⑴ 2x+7>2(3x-4)+5 2x+7>6x-8+5 -4x>-10 ∴∴ x<;2%; ⑵ - 2x-3 4 … x+7 8 -;6%;x 양변에 24를 곱하면 -6(2x-3)…3(x+7)-20x -12x+18…3x+21-20x 5x…3 ∴∴ x…;5#; ⑶ -(0.1x-2)-3.5<0.3x+1.2 양변에 10을 곱하면 -x+20-35<3x+12 -4x<27 ∴∴ x>-;;™4¶;; 4 (cid:9000) ② (cid:9000) ⑴ x<;2%; ⑵ x…;5#; ⑶ x>-;;™4¶;; -2 2 2 24 5-ax>3에서 -ax>-2 -a>0이므로 x> ;a@; 25 ax-a…0, ax…a a>0이므로 x…1 26 ax-3a>-3(x-3) ax-3a>-3x+9 (cid:9000) ③ (cid:9000) x…1 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지35 MAC6 ax+3x>3a+9 (a+3)x>3(a+3) a<-3에서 a+3<0이므로 부등식 (a+3)x>3(a+3)의 양변을 a+3으로 나누면 … 50`% 31 -3x+aæ5에서 -3xæ5-a a-5 3 ∴∴ x… x< 3(a+3) a+3 ∴∴ x<3 채점 기준 주어진 부등식을 Ax>B의 꼴로 정리하기 부등식의 해 구하기 … 50`% (cid:9000) x<3 배점 50`% 50`% 27 ax-2>-6에서 ax>-4 주어진 부등식의 해가 x<2이므로 a<0 x<- ;a$;이고 - ;a$; =2 ∴∴ a=-2 (cid:9000) -2 28 4x-10<6-ax, (4+a)x<16 ……㉠ 주어진 부등식의 해가 x>-4이므로 4+a<0 16 4+a 이고 16 4+a =-4 ㉠에서 x> ∴∴ a=-8 29 3(x-2)+1…2, 3x…7 ∴∴ x…;3&; ax+1æ-5, axæ-6의 해가 x…;3&;이므로 a<0이고 x…- ;a^;이다. - ;a^; =;3&;이므로 -7a=18 ∴∴ a=-;;¡7•;; 30 x+4<3(2x+a), x+4<6x+3a, -5x<3a-4 ∴∴ x> 4-3a 5 x-1 4 <2+x, x-1<8+4x -3x<9 ∴∴ x>-3 두 일차부등식의 해가 같으므로 4-3a 5 =-3, 4-3a=-15 -3a=-19 ∴∴ a=;;¡3ª;; 채점 기준 첫 번째 부등식의 해 구하기 두 번째 부등식의 해 구하기 a의 값 구하기 본문 76~79쪽 ` 0 1 2 3 4 a-5 3 이를 만족하는 자연수가 3개가 되도록 부등식의 해를 수직선 위에 나타내면 위의 그림과 같다. 3… a-5 3 <4 ∴∴ 14…a<17 (cid:9000) 14…a<17 32 2x+3>3x-a, -x>-a-3 ∴∴ x;3!;x+a 3x-18>2x+6a ∴∴ x>6a+18 이를 만족하는 가장 작은 정수가 0이 되도록 부등식의 6a+18 -1 0 해를 수직선 위에 나타내면 위의 그림과 같다. -1…6a+18<0, -19…6a<-18 ∴∴ -;;¡6ª;;…a<-3 (cid:9000) -;;¡6ª;;…a<-3 (cid:9000) -;;¡7•;; … 35`% … 35`% 2 일차부등식의 활용 p. 79~ 83 … 30`% (cid:9000) ;;¡3ª;; 배점 35`% 35`% 30`% 1 승주가 가진 돈을 x원이라 하면 시현이가 가진 돈은 (10000-x)원이다. 승주가 시현이보다 3000원 이상 더 가지려면 xæ(10000-x)+3000 2xæ13000 ∴∴ xæ6500 따라서 승주는 6500원 이상 가져야 한다. (cid:9000) 6500원 Ⅲ. 부등식 35 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지36 MAC6 이해쏙쏙술술풀이 2 다음 달 수학 시험에서 x점을 받는다고 하면 90+84+x 3 æ88 90+84+xæ264 ∴∴ xæ90 따라서 90점 이상을 받아야 한다. (cid:9000) 90점 3 과자를 x개 산다고 하면 180x+60…2000 180x…1940 ∴∴ x…;;ª9¶;;=10.7… 따라서 과자는 최대 10개까지 살 수 있다. (cid:9000) 10개 4 문집을 x권 만든다고 하면 그 비용은 {8000+120(x-30)}원이다. 8000+120(x-30)…150x 120x+4400…150x -30x…-4400 ∴∴ xæ;:$3$:);=146.6… 따라서 문집을 147권 이상 만들어야 한다. (cid:9000) 147권 5 한 달 동안 x분 사용한다고 하면 (`A요금제의 비용)<(`B요금제의 비용)이어야 하므로 18000+120x<13000+160x 40x>5000 ∴∴ x>125 따라서 125분 초과할 때 A요금제를 선택하는 것이 유 (cid:9000) 125분 리하다. 6 입장객 수를 x명이라 하면 (`20명의 단체 입장권)<(`x명의 입장료)이어야 하므로 5000_0.85_20<5000x 85000<5000x ∴∴ x>17 따라서 18명 이상일 때 단체 입장권을 사는 것이 유리 (cid:9000) 18명 하다. 7 시속 5`km로 걸은 거리를 x`km라 하면 시속 4`km로 걸은 거리는 (24-x)km이다. (시속 5`km로 걸은 시간)+(시속 4`km로 걸은 시간) …5이므로 + 24-x ;5{; 4 양변에 20을 곱하면 …5 36 이해쏙쏙 술술풀이 4x+5(24-x)…100 4x+120-5x…100 -x…-20 ∴∴ xæ20 따라서 시속 5`km로 걸은 거리는 20`km 이상이다. (cid:9000) 20`km 8 x`m 떨어진 문방구점까지 갔다 온다고 하면 + …30 ;3”0; ;2”0; 3x+2x…1800 5x…1800 ∴∴ x…360 따라서 집에서 최대 360`m 떨어진 문방구점까지 갔다 (cid:9000) 360`m 올 수 있다. 9 5`%의 소금물을 x`g 섞는다고 하면 ;10*0;_300+;10%0;_x…;10^0;_(300+x) 2400+5x…1800+6x ∴∴ xæ600 따라서 5`%의 소금물을 600`g 이상 넣어야 한다. (cid:9000) 600`g p. 84~ 87 1단계 CStep 01 18 05 7개 09 24곡 13 44명 17 19`cm 03 5, 6 04 11개 02 6 06 19마리 07 17일 후 08 13개월 후 10 34명 14 70분 18 90점 11 40분 15 12000원 16 5000원 19 60개 12 7개 20 ③ 21 ;3%;`km 22 10`km 23 400`g 25 100`g 24 45`g 01 연속하는 세 짝수를 x-2, x, x+2라 하면 x-2+x+x+2<54 3x<54 ∴∴ x<18 x의 최댓값은 16이므로 세 짝수 중 가장 큰 수의 최댓 (cid:9000) 18 값은 18이다. 02 어떤 수를 x라 하면 4x-6>x+9, 3x>15 ∴∴ x>5 따라서 가장 작은 자연수는 6이다. (cid:9000) 6 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지37 MAC6 03 주사위의 눈의 수를 x라 하면 3x>2(x+2), 3x>2x+4 ∴∴ x>4 따라서 구하는 수는 5, 6이다. (cid:9000) 5, 6 04 자두를 x개 산다고 하면 250x+700_3…5000 250x…2900 ∴∴ x…11.6 따라서 자두는 11개까지 살 수 있다. (cid:9000) 11개 05 1500원짜리 아이스크림을 x개 산다고 하면 900원짜 리 아이스크림은 (15-x)개 살 수 있으므로 900(15-x)+1500x…18000 13500-900x+1500x…18000 600x…4500 ∴∴ x…7.5 … 40`% 따라서 1500원짜리 아이스크림은 최대 7개까지 살 수 … 50`% 있다. 채점 기준 일차부등식 세우기 일차부등식 풀기 답 구하기 06 돼지를 x마리 싣는다고 하면 680_2+84x…3000 84x…1640 ∴∴ x…19.5… 따라서 돼지를 최대 19마리까지 실을 수 있다. 10 입장객의 수를 x명이라고 하면 180xæ4000+150(x-20) 180xæ4000+150x-3000 30xæ1000 xæ;:!3):);=33.3… 따라서 34명 이상 입장해야 한다. 채점 기준 일차부등식 세우기 일차부등식 풀기 답 구하기 11 x분 동안 주차한다고 하면 2000+400(x-20)…10000 400x-6000…10000 400x…16000 ∴∴ x…40 따라서 최대 40분 동안 주차할 수 있다. 12 사과를 x개 산다고 하면 1000x>700x+2000 300x>2000 ∴∴ x>6.6… 따라서 사과를 7개 이상 사야 유리하다. 13 입장객 수를 x명이라 하면 4000_0.7_50<4000_0.8_x ∴∴ x>;:!4&:%;=43.75 따라서 최소 44명부터 유리하다. … 10`% (cid:9000) 7개 배점 50`% 40`% 10`% (cid:9000) 19마리 III 부 등 식 07 x일 후 저금액은 형은 (2500+500x)원, 동생은 채점 기준 (1200+400x)원이 된다. (2500+500x)-(1200+400x)æ3000 100xæ1700 ∴∴ xæ17 따라서 17일 후이다. 일차부등식 세우기 일차부등식 풀기 답 구하기 (cid:9000) 17일 후 14 스마트 요금제와 베이직 요금제는 1분당 통화요금이 08 x개월 후부터라고 하면 30000+1000x<18000+2000x 1000x>12000 ∴∴ x>12 따라서 13개월 후부터이다. (cid:9000) 13개월 후 각각 120원, 270원이다. 한 달 통화 시간을 x분이라 하면 18000+270x>28500+120x 150x>10500 ∴∴ x>70 따라서 70분 초과일 때, 스마트 요금제를 이용하는 것 (cid:9000) 70분 이 유리하다. 09 다운받을 곡의 수를 x곡이라고 하면 500(x-8)…8000 500x-4000…8000 500x…12000 ∴∴ x…24 따라서 최대 24곡까지 다운받을 수 있다. 15 정가를 x원이라 하면 10`% 할인하여 판매한 금액은 (cid:9000) 24곡 0.9x원이고, 원가의 8`% 이익일 때 금액은 10000_(1+0.08)=10800(원)이므로 0.9xæ10800 ∴∴ xæ12000 본문 79~86쪽 … 50`% … 40`% … 10`% (cid:9000) 34명 배점 50`% 40`% 10`% (cid:9000) 40분 (cid:9000) 7개 … 50`% … 40`% … 10`% (cid:9000) 44명 배점 50`% 40`% 10`% Ⅲ. 부등식 37 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지38 MAC6 이해쏙쏙술술풀이 따라서 정가는 12000원 이상으로 정하면 된다. 따라서 ;3%;`km 이내에 있는 상점을 이용해야 한다. (cid:9000) 12000원 (cid:9000) ;3%;`km 16 원가를 x원이라 하면 정가는 x(1+0.3)=1.3x(원)이 고, 원가의 20`% 이익일 때 금액은 x(1+0.2)=1.2x(원)이므로 1.3x-500æ1.2x, 13x-5000æ12x ∴∴ xæ5000 따라서 원가는 5000원 이상이다. 22 x`km까지 올라갔다 온다고 하면 …;2(;, 3x+2(x+2)…54, 5x…50 + ;4{; x+2 6 ∴∴ x…10 (cid:9000) 5000원 따라서 최대 10`km까지 올라갈 수 있다. (cid:9000) 10`km 17 세로의 길이를 x`cm라고 하면 23 4`%의 소금물 2`kg에 들어 있는 소금의 양은 2(18+x)æ74, 2xæ38 ∴∴ xæ19 따라서 세로의 길이는 19`cm 이상 되어야 한다. (cid:9000) 19`cm 18 네 번째 과학 시험 점수를 x점이라고 하면 90+86+94+x 4 æ90, 270+xæ360 ∴∴ xæ90 따라서 90점 이상 받아야 한다. (cid:9000) 90점 2000_;10$0;=80(g)이다. 이 소금물에서 증발시키는 물의 양을 x`g이라 하면 80æ;10%0;_(2000-x), 8000æ5(2000-x) 5xæ2000 ∴∴ xæ400 따라서 최소 400`g의 물을 증발시켜야 한다. 19 지윤, 세희, 승민 세 사람이 가진 구슬의 개수를 각각 a 24 8`%의 설탕물 300`g에 들어 있는 설탕의 양은 300_;10*0;=24(g) 넣어야 하는 설탕의 양을 x`g이라고 하면 24+xæ;1™0º0;_(300+x) 100(24+x)æ20(300+x) 240+10xæ600+2x 8xæ360 ∴∴ xæ45 따라서 넣어야 하는 설탕의 양은 45`g 이상이다. 8`%의 설탕물에 들어 있는 설탕의 양 구하기 채점 기준 일차부등식 세우기 일차부등식 풀기 답 구하기 25 15`%의 소금물을 x`g 섞는다고 하면 ;1¡0™0;_200+;1¡0∞0;_xæ;1¡0£0;(200+x) 2400+15xæ2600+13x 2xæ200 ∴∴ xæ100 따라서 15`%의 소금물은 최소 100`g 섞어야 한다. (cid:9000) 400`g … 20`% … 40`% … 30`% … 10`% (cid:9000) 45`g 배점 20`% 40`% 30`% 10`% (cid:9000) 100`g 개, b개, c개라 할 때 a:b=3:1에서 b=;3!;a ……㉠ a:c=4:1에서 c=;4!;a ……㉡ a+b+c…100 ……㉢ ㉠, ㉡을 ㉢에 대입하면 a+;3!;a+;4!;a…100, ;1!2(;a…100 ∴∴ a…63.1… a는 63 이하이고, 3과 4의 공배수이므로 a의 최댓값 은 60이다. 따라서 지윤이가 가질 수 있는 구슬의 최대 개수는 60 (cid:9000) 60개 개이다. 20 걷는 거리를 x`m라 하면, 달린 거리는 (4000-x)m + …50 4000-x 이므로 ;6”0; 120 2x+4000-x…6000 ∴∴ x…2000 따라서 걷는 거리는 2000`m 이하로 해야 한다. (cid:9000) ③ 21 역에서 상점까지의 거리를 x`km라 하면 + ;4{; ;4{; +;6!0);…1, 15x+15x+10…60, 30x…50 ∴∴ x…;3%; 38 이해쏙쏙 술술풀이 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지39 MAC6 2단계 BStep 01 ⑤ 04 ④ 08 -19 02 ② 05 ④ 09 x…;7!9!; 03 ㄴ, ㄷ, ㅂ 06 -2 10 3 07 2 11 3 13 x…6 12 ;5@;0, (일차식)<0, (일차식)æ0, ˙k 일차부등식이 아니다. (일차식)…0인 꼴을 찾는다. ① 6<7 ② 3x-6=7 ③ 4px2æ81, 4px2-81æ0 ˙k 일차부등식이 아니다. ˙k 등식 ④ 4x+xæ5x, 0æ0 ⑤ 8x>35, 8x-35>0 ˙k 일차부등식이 아니다. ˙k 일차부등식 02 – <- ;2A; ;2B; ˙k a>b ① a>b ③ a>b > ˙k ;4A; ④ a>b ⑤ a>b ˙k ˙k ;4B; -9a<-9b ˙k -0.2a<-0.2b -9a-8<-9b-8 (cid:9000) ② 03 부등식이 성립하지 않는 미지수의 값을 찾는다. ㄱ. a>b, a-b>0, c>d, c-d>0이므로 ㄱ. a-b+c-d>0, (a+c)-(b+d)>0 ㄱ. ∴∴ a+c>b+d ㄴ. a=4, b=3, c=5, d=1일 때, a-c=-1, b-d=2이므로 a-cb, b-a<0이고 a-c d ㅁ. a>b, b>c, a>b>c이므로 a>c ㅂ. a=-3, b=-2일 때, a2=9, b2=4이므로 a2>b2 (cid:9000) ㄴ, ㄷ, ㅂ p. 88~ 91 04 본문 86~89쪽 부등식의 성질을 이용하여 a의 값의 범위를 먼저 구한다. -1<2a-5…5의 양변에 5를 더하면 4<2a…10 ∴∴ 2– 의 양변에 6을 곱하면 3(x-1)+36>-(2x-3) 3x-3+36>-2x+3 5x>-30 ∴∴ x>-6 따라서 해는 -5, -4, -3, -2, -1의 5개이다. (cid:9000) ④ <0의 양변에 12를 곱하면 06 - 2x-1 3 x-2 4 4(2x-1)-3(x-2)<0 8x-4-3x+6<0 5x<-2 III 부 등 식 (cid:9000) ⑤ ∴∴ x<-;5@; x<-;5@;를 만족시키는 가장 큰 정수는 -1이므로 a=-1 … 45`% 0.2(x-5)<;5@;x-0.6의 양변에 5를 곱하면 x-5<2x-3 ∴∴ x>-2 x>-2를 만족시키는 가장 작은 정수는 -1이므로 b=-1 ∴∴ a+b=-2 채점 기준 a의 값 구하기 b의 값 구하기 a+b의 값 구하기 07 주어진 부등식을 푼 후 주어진 해와 비교한다. ;3@;(5x+a)<5-;2!;(x-3)의 양변에 6을 곱하면 4(5x+a)<30-3(x-3) 20x+4a<30-3x+9 23x<39-4a 39-4a 23 ∴∴ x< … 45`% … 10`% (cid:9000) -2 배점 45`% 45`% 10`% Ⅲ. 부등식 39 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지40 MAC6 이해쏙쏙술술풀이 부등식의 해가 x<;2#3!;이므로 39-4a=31 ∴∴ a=2 (cid:9000) 2 08 두 일차부등식을 푼 후 해를 비교한다. -2x+5<8x+15, 10x>-10 ∴∴ x>-1 8+a 11 7x-a>-4x+8, 11x>8+a ∴∴ x> 8+a 11 =-1, 8+a=-11 ∴∴ a=-19 09 A, B에 주어진 식을 대입한 후 부등식을 푼다. AæB이므로 – 8x-3 3 -;1∞2;æ 5x+1 8 양변에 24를 곱하면 -8(8x-3)-10æ3(5x+1) -64x+24-10æ15x+3 -79xæ-11 ∴∴ x…;7!9!; (cid:9000) x…;7!9!; +1의 양변에 12를 곱하면 10 > x+4 4 ax-2 6 3(x+4)>2(ax-2)+12 (3-2a)x>-4 이 부등식의 해가 x<;3$;이므로 3-2a<0에서 x< 4 2a-3 4 2a-3 =;3$;, 2a-3=3 ∴∴ a=3 채점 기준 ax>b의 꼴로 바꾸기 a의 값 구하기 … 60`% (cid:9000) 3 배점 40`% 60`% 11 12 px>q가 항상 성립하는 경우는 p=0, q<0이다. ax-1>3x-a, (a-3)x>1-a 따라서 a-3=0, 1-a<0이어야 하므로 a=3, a>1 에서 a=3이다. (cid:9000) 3 주어진 부등식을 푼 후 해의 조건에 맞게 수직선 위에 나 타낸다. 1-7(x-3)>5(x-a), 1-7x+21>5x-5a -12x>-5a-22 ∴∴ x< 5a+22 12 40 이해쏙쏙 술술풀이 이를 만족하는 가장 큰 정수 가 2가 되도록 부등식의 해를 수직선 위에 나타내면 오른쪽 그림과 같다. 5a+22 12 2< …3 ∴∴ ;5@;-2 ax-6a…12-2x, (a+2)x…6(a+2) a>-2에서 a+2>0이므로 x…6 (cid:9000) x…6 14 x=a가 부등식 px+q>0의 해가 아니면 x=a는 부등 식 px+q…0의 해이다. x=1이 ;3@;x-2ax… 5(ax-1) 12 의 해이므로 , 8-24a…5a-5, 29aæ13 ;3@;-2a… 5a-5 12 ∴∴ aæ;2!9#; (cid:9000) aæ;2!9#; … 40`% 15 ax+3x…b, (a+3)x…b 이 부등식의 해가 x…-1이므로 a+3>0에서 x… b a+3 =-1, -a-3=b b a+3 ∴∴ a+b=-3 a-b=1과 a+b=-3을 풀면 a=-1, b=-2 채점 기준 부등식을 풀어 a, b 사이의 관계 구하기 a, b의 값 구하기 … 40`% (cid:9000) a=-1, b=-2 … 60`% 배점 60`% 40`% 16 (사다리꼴의 넓이)=;2!;_{(윗변)+(아랫변)}_(높이) 아랫변의 길이를 x`cm라 하면 ;2!;_(10+x)_6æ54 3xæ24 ∴∴ xæ8 따라서 아랫변의 길이는 8`cm 이상이어야 한다. (cid:9000) 8`cm (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지41 MAC6 17 (승윤이가 받는 월급)=(기본 월급)+(한 달 동안 판매한 22 (소금의 양)= _(소금물의 양) (농도) 100 대금)_0.02 승윤이가 x대를 판매했다고 하면 150+1000×0.02xæ300 ∴∴ xæ7.5 따라서 승윤이는 자동차를 8대 이상 팔아야 한다. (cid:9000) 8대 (cid:9000) ⑤ 18 (거리)=(시간)_(속력)임을 이용하여 부등식을 세운다. 경과한 시간을 x분이라 하면 0.4x+0.3xæ3.5 ∴∴ xæ5 따라서 최소한 5분이 경과해야 한다. 19 주스 x`L의 ;6!;을 마신 후 남은 양은 ;6%;x`L이다. 처음 병에 들어 있던 포도주스의 양을 x`L라고 하면 x-;6!;x-;6!;xæ1.5 ∴∴ xæ2.25 따라서 이 병의 용량은 2.25`L 이상이다. (cid:9000) 2.25`L 20 (A마트에서의 구매금액)>(B마트에서의 구매금액)임을 이용하여 식을 세운다. 아이스크림을 x개 산다고 하면 구매금액은 A마트에 서는 1000(x-1)원, B마트에서는 (1000x_0.9)원 이다. (A마트에서의 구매금액)>(B마트에서의 구매금액)이 므로 1000(x-1)>1000x_0.9, 1000x-1000>900x 100x>1000 ∴∴ x>10 따라서 B마트에서 11개 이상 구매해야 A마트보다 저 (cid:9000) 11개 렴하다. 21 20개의 쿠키를 만들면 300_20=6000(원)이 들고 21개부터는 한 개당 300_{1-;1£0º0;}=210(원)이 든 다. x개의 쿠키를 만든다고 하면 6000+210(x-20)…10000 … 55`% 210x…8200, x…;;•2™1º;;=39.04… 따라서 최대 39개까지 만들 수 있다. 채점 기준 일차부등식 세우기 일차부등식 풀기 최대 만들 수 있는 쿠키의 개수 구하기 … 35`% … 10`% (cid:9000) 39개 배점 55`% 35`% 10`% III 부 등 식 본문 89~91쪽 13`%의 소금물 400`g에 들어 있는 소금의 양은 ;1¡0£0;_400=52(g) x`g의 물을 증발시키고 x`g의 소금을 더 넣는다고 하면 52+x 400 _100æ20, 52+xæ80 ∴∴ xæ28 따라서 최소 28`g의 물을 증발시켜야 한다. (cid:9000) 28`g 23 방송을 시청할 수 없는 지점을 생각해본다. 자동차를 타고 간 시간을 x시간이라 하면 기지국 A를 기준으로 100`km 이상 120`km 이하의 거리에서 DMB 방송을 시청할 수 없으므로 100…80x…120 ∴∴ 1.25…x…1.5 따라서 오전 11시 15분부터 오전 11시 30분까지는 DMB 방송을 시청할 수 없다. (cid:9000) 오전 11시 15분부터 오전 11시 30분까지 24 x:y=6:5이면 x=6k, y=5k라 한다. 처음 배와 사과의 개수를 각각 6x개, 5x개, 썩어서 버 린 것의 개수를 각각 5y개, 2y개라 하면 (6x-5y):(5x-2y)=9:8 8(6x-5y)=9(5x-2y) 3x=22y이므로 x는 22의 배수이다. 150…6x…300에서 25…x…50이므로 x=44이다. 따라서 처음 배의 개수는 6_44=264(개)이다. (cid:9000) 264개 25 (시간)= (거리) (속력) 임을 이용하여 부등식을 세운다. KTX를 타고 x`km를 간다면, 새마을호를 타고 (427-x)km를 가게 된다. 427 km x km 시속 200 km 서울 (427-x) km 시속 150 km 부산 (KTX를 타고 간 시간) +(새마을호를 타고 간 시간)…;2%; 427-x 150 + …;2%; ;20{0; 양변에 600을 곱하면 3x+4(427-x)…1500 3x-4x…1500-1708 ∴∴ xæ208 따라서 KTX 열차를 타고 208`km 이상 가야 한다. (cid:9000) 208`km Ⅲ. 부등식 41 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지42 MAC6 이해쏙쏙술술풀이 26 전체 일의 양을 1로 놓고 단위 시간 동안 할 수 있는 일의 양을 구해 부등식을 세운다. 어떤 일의 양을 1이라 하면 1급, 2급 자격증 소지자 4 x개의 제품을 만드는 비용은 ⁄ 기계를 사는 경우 1명이 하루에 할 수 있는 일의 양은 각각 ;6!;, ;1¡0;이다. 한 팀에 있는 2급 자격증 소지자를 x명이라 하면 1급 자격증 소지자는 (8-x)명이므로 ;6!;(8-x)+;1¡0;xæ1 양변에 30을 곱하면 5(8-x)+3xæ30 40-2xæ30 ∴∴ x…5 따라서 2급 자격증 소지자는 최대 5명까지 들어갈 수 (cid:9000) 5명 있다. 3단계 AStep 1 12…x<16 4 1251 7 5…x<25.5 5 23개 2 2 6 34개 p. 92~ 93 3 x<-8 3-0.5… <3+0.5, 2.5… x-2 4 x-2 4 <3.5 1 10…x-2<14 ∴∴ 12…x<16 (cid:9000) 12…x<16 2 ax+2a<2x-1 (a-2)x<-1-2a 이 부등식은 해가 없으므로 a-2=0, -1-2a…0이 다. a-2=0에서 a=2 -1-2a…0에서 aæ-;2!; ∴∴ a=2 3 (a+b)x+2a-3b<0에서 (a+b)x<3b-2a ……㉠ (cid:9000) 2 주어진 부등식의 해가 x>-;4#;이므로 a+b<0이고, 3b-2a a+b 3b-2a a+b 이므로 ㉠에서 x> =-;4#;, a=3b 따라서 a, b는 같은 부호이고 a+b<0이므로 a<0, b<0이다. a=3b를 (a-2b)x+3a-b>0에 대입하면 bx+8b>0, bx>-8b ∴∴ x<-8`(∵∵ b<0) (cid:9000) x<-8 42 이해쏙쏙 술술풀이 (기계의 비용)+(인건비)+(원료비) =50000+60x+10x =50000+70x(원) ……㉠ ¤ 기계를 사지 않는 경우 (인건비)+(원료비) =100x+10x=110x(원) ……㉡ 기계를 구매하여 사용하는 것이 이익이므로 ㉠, ㉡에 서 50000+70x<110x ∴∴ x>1250 따라서 제품을 1251개 이상 만들면 기계를 구매하는 것이 이익이므로 x의 최솟값은 1251이다. (cid:9000) 1251 5 각설탕 1개의 무게를 x`g이라 하면 10x=;1¡0º0;_(540+10x) 100x=540+10x ∴∴ x=6 따라서 각설탕 1개는 6`g이다. 이때 각설탕을 y개 넣었다고 하면 æ20 _100æ20, 600y 540+6y 6y 540+6y 600yæ20(540+6y), 30yæ540+6y ∴∴ yæ22.5 따라서 각설탕은 적어도 23개가 필요하다. (cid:9000) 23개 6 원기둥의 겉넓이는 2_p_122+24p_16 =288p+384p=672p(cm2) 원기둥에 구멍 하나를 뚫을 때마다 증가하는 겉넓이는 2p_16-(p_12)_2=30p(cm2) 구멍을 x개 뚫었다고 하면 672p+30pxæ672p_;2%;, 30pxæ1008p ∴∴ xæ33.6 따라서 구멍은 최소 34개 뚫어야 한다. (cid:9000) 34개 7 A자동차는 마지막 3`m를 2초 동안 달리므로 A자동차의 속력은 ;2#;`m/초이고, 30`m를 가는 데 30÷;2#;=20(초)가 걸렸다. 따라서 B자동차는 30`m를 가는 데 18초가 걸렸다. B자동차의 처음 속력을 a`m/초라 하면, 출발점에서 P (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지43 MAC6 지점까지의 거리가 x`m이므로 ;a{; 다. + 30-x 3a =18이 ∴∴ a= x+15 27 B자동차의 처음 속력은 A자동차의 속력보다 느리므 로 x+15 27 ∴∴ 5…x<25.5 <;2#;에서 x<25.5이다. (cid:9000) 5…x<25.5 Ⅳ 연립방정식 1 연립일차방정식 III 부 등 식 본문 91~97쪽 1. 연립방정식 p. 96~ 97 1 ㄱ. xy항이 있으므로 일차방정식이 아니다. ㄴ. 등식이 아니므로 일차방정식이 아니다. ㄷ. 식을 정리하면 x-y-1=0이므로 미지수가 2개 인 일차방정식이다. ㄹ. 분모에 미지수가 있으므로 일차방정식이 아니다. ㅁ. 식을 정리하면 4x-6y-1=0이므로 미지수가 2 개인 일차방정식이다. ㅂ. x, y의 차수가 모두 2이므로 일차방정식이 아니다. (cid:9000) ㄷ, ㅁ 2 x가 자연수이므로 일차방정식 5x+y=14에 x=1, 2, 3, …을 차례로 대입하여 y의 값을 구하면 다음 표와 같다. x y 1 9 2 4 4 3 … -1 -6 … 이때 y도 자연수이므로 해는 (1, 9), (2, 4)의 2개이 (cid:9000) 2개 다. 3 x=-2, y=1을 ax+5y=1에 대입하면 -2a+5=1, -2a=-4 ∴∴ a=2 (cid:9000) 2 4 주어진 연립방정식에 x=1, y=-2를 각각 대입하여 두 일차방정식이 모두 성립하는 것을 찾는다. `1-(-2)+1 2_1+(-2)=0 -3_1+2_(-2)=-7 4_1-7_(-2)+10 `3_1-(-2)=5 1-2_(-2)=5 `-1-(-2)=1 5_1-4_(-2)+3 `8_1-3_(-2)+2 2_1+2_(-2)+-3 ① [ ② [` ③ [ ④ [ ⑤ [ 5 x=1, y=-1을 ax+2y=3에 대입하면 a_1+2_(-1)=3 ∴∴ a=5 x=1, y=-1을 3x-by=2에 대입하면 3_1-b_(-1)=2 ∴∴ b=-1 따라서 a-b=5-(-1)=6이다. (cid:9000) ③ (cid:9000) 6 Ⅲ. 부등식 43 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지44 MAC6 이해쏙쏙술술풀이 1단계 CStep 02 ①, ③ 05 ⑤ 03 2x+y=180 06 ③, ④ 01 ②, ④ 04 ③ 08 ⑴ 600x+900y=5400 ⑵ (3, 4), (6, 2) 09 ② 13 100 10 -3 14 ③ 11 10 15 ⑤ 07 2개 12 ③ 16 ⑴ [ `x+y=8 6x+8y=60 ⑵ x=2, y=6 17 1 18 4 19 3 p. 98~ 100 08 ⑴ 600x+900y=5400 ⑵ x=3일 때 1800+900y=5400, y=4 x=6일 때 3600+900y=5400, y=2 ∴∴ (x, y)=(3, 4), (6, 2) (cid:9000) ⑴ 600x+900y=5400 ⑵ (3, 4), (6, 2) 09 x=-3, y=1을 4x+3y-a=0에 대입하면 4_(-3)+3_1-a=0 -9-a=0 ∴∴ a=-9 01 ② 주어진 식을 정리하면 2y=41이므로 미지수가 1개 인 일차방정식이다. ④ x의 차수가 2이므로 일차방정식이 아니다. 10 x=1, y=3k를 3x-y=12에 대입하면 3-3k=12, -3k=9 ∴∴ k=-3 (cid:9000) ②, ④ 11 x=3, y=a를 2x+y=10에 대입하면 02 ②, ⑤ 일차식이 아니다. ④ 6(x-y)+3y=6x+4 6x-6y+3y=6x+4 3y+4=0 ˙k 미지수가 2개가 아니다. (cid:9000) ①, ③ 03 삼각형의 내각의 크기의 합은 180˘이므로 2x+y=180 (cid:9000) 2x+y=180 04 ③ 100x+500y=3200 x+5y=32 ˙k 05 ⑤ 4_4+(-4)+10 (cid:9000) ③ (cid:9000) ⑤ 06 주어진 일차방정식에 x=1, y=3을 대입하여 식이 성 6+a=10, a=4 x=b, y=-2를 2x+y=10에 대입하면 2b-2=10, 2b=12, b=6 ∴∴ a+b=10 12 꿩과 토끼의 머리의 수는 1개씩이므로 x+y=35 꿩과 토끼의 다리의 수는 각각 2개, 4개이므로 2x+4y=94 ∴∴ [ `x+y=35 2x+4y=94 13 4x-y=76에서 a=4, b=76 x+y=20에서 c=20 ∴∴ a+b+c=100 14 x+5y=26의 해는 (1, 5), (6, 4), (11, 3), (16, 2), (21, 1) 2x+3y=24의 해는 (3, 6), (6, 4), (9, 2) 따라서 연립방정식의 해는 (6, 4)이다. (cid:9000) ③, ④ 15 주어진 연립방정식에 x=5, y=11을 대입하여 두 일 차방정식이 모두 성립하는 것을 찾는다. ⑤ [ `2_5-11=-1 -3_5+2_11=7 x=1이면 2y-3=5이므로 y=4 x=2이면 2y-6=5이므로 y는 자연수가 아니다. x=3이면 2y-9=5이므로 y=7 x=4, 5, 6, 7, 8, 9일 때에는 방정식을 만족하는 10보 다 작은 자연수 y가 없다. 따라서 순서쌍 (x, y)는 (1, 4), (3, 7)의 2개이다. 16 ⑴ [ `x+y=8 6x+8y=60 ⑵ x+y=8에서 (x, y)=(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (cid:9000) 2개 (6, 2), (7, 1) (cid:9000) ② (cid:9000) -3 (cid:9000) 10 (cid:9000) ③ (cid:9000) 100 (cid:9000) ③ (cid:9000) ⑤ … 50`% 립하는 것을 찾는다. ① 1-2_3+4 ② 2_1+3+7 ③ 3_1=3 ④ 1-3_3+8=0 ③ 3_1-2_3+3 07 2y-3x=5에서 44 이해쏙쏙 술술풀이 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지45 MAC6 6x+8y=60에서 (x, y)=(2, 6), (6, 3) 따라서 연립방정식의 해는 x=2, y=6이다. … 50`% `x+y=8 6x+8y=60 ⑵ x=2, y=6 (cid:9000) ⑴ [ 채점 기준 ⑴ 구하기 ⑵ 구하기 17 x=-2, y=5를 -x+ay=-13에 대입하면 2+5a=-13, a=-3 x=-2, y=5를 x-y=b에 대입하면 -2-5=b, b=-7 ∴∴ 2a-b=-6+7=1 18 x=3, y=1을 ax+y=10에 대입하면 3a+1=10, a=3 x=3, y=1을 2x+by=7에 대입하면 6+b=7, b=1 ∴∴ a+b=4 채점 기준 a의 값 구하기 b의 값 구하기 a+b의 값 구하기 19 x=m+1, y=-5를 x-2y=12에 대입하면 m+1+10=12, m=1 x=2, y=-5를 ax+y=1에 대입하면 2a-5=1, a=3 배점 50`% 50`% (cid:9000) 1 … 40`% … 40`% … 20`% (cid:9000) 4 배점 40`% 40`% 20`% (cid:9000) 3 2 연립방정식의 풀이 1 ⑴ [ `2x+y=8 ……㉠ x-y=7 ……㉡ p. 101~ 109 ㉠+㉡을 하면 3x=15 ∴∴ x=5 x=5를 ㉡에 대입하면 5-y=7 ∴∴ y=-2 `3x-2y=12 ……㉠ 2x+y=1 ……㉡ ⑵ [ ㉠+㉡_2를 하면 3x-2y=12 +>≥4x+2y= 2 7x =14 ∴∴ x=2 본문 98~102쪽 x=2를 ㉡에 대입하면 4+y=1 ∴∴ y=-3 `5x+4y=6 ……㉠ 3x+4y=10 ……㉡ ⑶ [ ㉠-㉡을 하면 2x=-4 ∴∴ x=-2 x=-2를 ㉠에 대입하면 -10+4y=6, 4y=16 ∴∴ y=4 `4x-2y=3x+5 ……㉠ 2x-3y=12 ……㉡ ⑷ [ ㉠을 정리하면 x-2y=5 ……㉢ ㉢_2-㉡을 하면 2x-4y=10 ->≥2x-3y=12 -y=-2 ∴∴ y=2 y=2를 ㉢에 대입하면 x-4=5 ∴∴ x=9 (cid:9000) ⑴ x=5, y=-2 ⑵ x=2, y=-3 ⑶ x=-2, y=4 ⑷ x=9, y=2 2 ⑴ [ `y=-2x+1 ……㉠ 3x+2y=5 ……㉡ ㉠을 ㉡에 대입하면 3x+2(-2x+1)=5 3x-4x+2=5 ∴∴ x=-3 x=-3을 ㉠에 대입하면 y=-2_(-3)+1=7 y=-x+2 ……㉠ y=3x-4 ……㉡ ㉠=㉡이므로 -x+2=3x-4, 4x=6 ⑵ [ IV 연 립 방 정 식 ∴∴ x=;2#; x=;2#;을 ㉠에 대입하면 y=-;2#;+2=;2!; `2x-3y=-5 ……㉠ x=3y-16 ……㉡ ⑶ [ ㉡을 ㉠에 대입하면 2(3y-16)-3y=-5 3y=27 ∴∴ y=9 y=9를 ㉡에 대입하면 x=3_9-16=11 `2x-y=12 ……㉠ x+3y=-1 ……㉡ ⑷ [ ㉠을 y에 관하여 풀면 y=2x-12 ……㉢ ㉢을 ㉡에 대입하면 x+3(2x-12)=-1, 7x=35 ∴∴ x=5 x=5를 ㉢에 대입하면 y=2_5-12=-2 (cid:9000) ⑴ x=-3, y=7 ⑵ x=;2#;, y=;2!; (cid:9000) ⑶ x=11, y=9 ⑷ x=5, y=-2 Ⅳ. 연립방정식 45 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지46 MAC6 3 ㈎ [ `3x-2y=-1 ……㉠ 2x+3y=8 ……㉡ 7 ⑴ [ `2(x+y)+7y+13=0 ……㉠ 3x-5(x-y)+15=0 ……㉡ 이해쏙쏙술술풀이 ㉠_3+㉡_2를 하면 13x=13 ∴∴ x=1 x=1을 ㉠에 대입하면 3-2y=-1 ∴∴ y=2 ㈎의 해 x=1, y=2를 ㈏에 대입하면 `2a-2=4 a+4b=11 ∴∴ a=3, b=2 [ (cid:9000) a=3, b=2 4 주어진 두 연립방정식의 해가 같으므로 연립방정식 [ `4x+y=2 ……㉠` x-4y=9 ……㉡ 의 해와 같다. ㉠-㉡_4를 하면 17y=-34 ∴∴ y=-2 y=-2를 ㉡에 대입하면 x+8=9 ∴∴ x=1 x=1, y=-2를 ax+by=8, bx+ay=-1에 대입 하면 `a-2b=8 ……㉢ [ -2a+b=-1 ……㉣ ㉢_2+㉣을 하면 -3b=15 ∴∴ b=-5 b=-5를 ㉢에 대입하면 a+10=8 ∴∴ a=-2 (cid:9000) a=-2, b=-5 5 ax+by=3에 x=1, y=-1을 대입하고 bx+ay=3에 x=-;1!1(;, y=;1¶1;을 대입하여 정리하 면 `a-b=3 ……㉠ [ 7a-19b=33 ……㉡ ㉠_7-㉡을 하면 12b=-12 ∴∴ b=-1 b=-1을 ㉠에 대입하면 a=2 (cid:9000) a=2, b=-1 6 `에 x=3, y=4를 대입하면 `ax+by=-7 [ 5x+cy=7 `3a+4b=-7 ……㉠ [ 15+4c=7 ……㉡ ㉡에서 c=-2 또, ax+by=-7에 x=0, y=;4&;을 대입하면 ;4&;b=-7 ∴∴ b=-4 b=-4를 ㉠에 대입하면 a=3 ∴∴ a+b+c=3-4-2=-3 (cid:9000) -3 46 이해쏙쏙 술술풀이 ㉠을 정리하면 2x+9y=-13 ……㉢ ㉡을 정리하면 -2x+5y=-15 ……㉣ ㉢+㉣을 하면 14y=-28 ∴∴ y=-2 y=-2를 ㉣에 대입하면 ⑵ [ -2x-10=-15, -2x=-5 ∴∴ x=;2%; x-y=21 ……㉠ 1.2x+1.5y=0.9 ……㉡ ㉡_10을 하면 12x+15y=9 ∴∴ 4x+5y=3 ……㉢ ㉠_4-㉢을 하면 -9y=81 ∴∴ y=-9 y=-9를 ㉠에 대입하면 x=12 “;6%;x- =;;¡4ª;; ……㉠ ⑶ [ x- ;4}; y-5 2 =8 ……㉡ ㉠_12를 하면 10x-3y=57 ……㉢ ㉡_2를 하면 2x-(y-5)=16 ∴∴ 2x-y=11 ……㉣ ㉢-㉣_3을 하면 4x=24 ∴∴ x=6 x=6을 ㉣에 대입하면 y=1 ⑷ [ `3{;5@;x-;1£0;y}=;1¡0; ……㉠ 0.16x-0.27y=-0.1 ……㉡ ㉠_10을 하면 12x-9y=1 ……㉢ ㉡_100을 하면 16x-27y=-10 ……㉣ ㉢_3-㉣을 하면 20x=13 ∴∴ x=;2!0#; x=;2!0#;을 ㉢에 대입하면 y=;4#5$; (cid:9000) ⑴ x=;2%;, y=-2 ⑵ x=12, y=-9 (cid:9000) ⑶ x=6, y=1 ⑷ x=;2!0#;, y=;4#5$; 8 [ + = = – ……㉠ ……㉡ x+y 12 x+y 12 x-1 2 ` x-2 10 y+1 3 y-3 4 ㉠_12를 하면 6(x-1)-4(y+1)=x+y ∴∴ x-y=2 ……㉢ ㉡_60을 하면 6(x-2)+15(y-3)=5(x+y) ∴∴ x+10y=57 ……㉣ (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지47 MAC6 ㉢-㉣을 하면 -11y=-55 ∴∴ y=5 y=5를 ㉢에 대입하면 x=7 (cid:9000) x=7, y=5 ⑵ ⑴에서 x:y:z=3z:2z:z=3:2:1 (cid:9000) ⑴ x=3z, y=2z ⑵ 3:2:1 본문 103~110쪽 9 7x+2y+5=2x+7y ……㉠ [ 7x+2y+5=5(x+y) ……㉡ ㉠을 정리하면 x-y=-1 ……㉢ ㉡을 정리하면 2x-3y=-5 ……㉣ ㉢_2-㉣을 하면 y=3 y=3을 ㉢에 대입하면 x=2 x=2, y=3을 x-3y=k에 대입하면 k=2-9=-7 (cid:9000) -7 이다. 10 [ `a(x-1)+y=b ……㉠ 2x+y=3 ……㉡ ㉠을 정리하면 ax+y=a+b `ax+y=a+b 2x+y=3 [ ⑴ 해가 무수히 많으므로 ;2A; a+b 3 =1에서 a=2, ;2A; a+b 3 이다. =1에서 b=1 = =;1!;= 2+b 3 a+b 3 2+b 3 = =;1!;+ a+b 3 ⑵ 해가 없으므로 ;2A; 이다. =1에서 a=2, ;2A; +1에서 b+1 (cid:9000) ⑴ a=2, b=1 ⑵ a=2, b+1 11 =A, 1 x+y 1 x-y `A-B=1 ……㉠ A+2B=7 ……㉡ [ =B로 치환하면 ㉠-㉡을 하면 -3B=-6 ∴∴ B=2 B=2를 ㉠에 대입하면 A=3 1 x-y 1 x+y =3에서 x-y=;3!; ……㉢ =2에서 x+y=;2!; ……㉣ ㉢+㉣을 하면 2x=;6%; ∴∴ x=;1∞2; x=;1∞2;를 ㉣에 대입하면 y=;1¡2; 12 ⑴ [ `3x-4y=z ……㉠ x-2y=-z ……㉡ ㉠-㉡_2를 하면 x=3z x=3z를 ㉡에 대입하면 y=2z (cid:9000) x=;1∞2;, y=;1¡2; p. 110 1 ⑴ x=7, y=-2 ⑵ x=5, y=-1 ⑶ x=1, y=3 2 ⑴ x=-1, y=4 ⑵ x=1, y=-4 ⑶ x=3, y=7 3 ⑴ x=-2, y=1 ⑵ x=7, y=4 ⑶ x=;2%;, y=-1 ⑷ x=2, y=1 ⑸ x=4, y=-1 1 ⑴ [ `x+y=5 ……㉠ x+3y=1 ……㉡ ㉠-㉡을 하면 -2y=4 ∴∴ y=-2 y=-2를 ㉠에 대입하면 x-2=5 ∴∴ x=7 x+2y=3 ……㉠ 3x-2y=17 ……㉡ ㉠+㉡을 하면 4x=20 ∴∴ x=5 x=5를 ㉠에 대입하면 5+2y=3 2y=-2 ∴∴ y=-1 4x-3y=-5 ……㉠ 2x+y=5 ……㉡ ㉠-㉡_2를 하면 4x-3y=-5 ->≥4x+2y=10 ⑵ [` ⑶ [` -5y=-15 ∴∴ y=3 y=3을 ㉡에 대입하면 2x+3=5 2x=2 ∴∴ x=1 (cid:9000) ⑴ x=7, y=-2 ⑵ x=5, y=-1 ⑶ x=1, y=3 2 ⑴ [` 3x+y=1 ……㉠ y=x+5 ……㉡ ㉡을 ㉠에 대입하면 3x+x+5=1 4x=-4 ∴∴ x=-1 x=-1을 ㉡에 대입하면 y=-1+5=4 `y=3x-7 ……㉠ 4x-y=8 ……㉡ ㉠을 ㉡에 대입하면 4x-(3x-7)=8 ∴∴ x=1 x=1을 ㉠에 대입하면 y=3-7=-4 x=10-y ……㉠ 2x-y=-1 ……㉡ ⑵ [ ⑶ [` Ⅳ. 연립방정식 47 IV 연 립 방 정 식 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지48 MAC6 이해쏙쏙술술풀이 ㉠을 ㉡에 대입하면 2(10-y)-y=-1, -3y=-21 ∴∴ y=7 y=7을 ㉠에 대입하면 x=10-7=3 (cid:9000) ⑴ x=-1, y=4 ⑵ x=1, y=-4 ⑶ x=3, y=7 3 ⑴ [` 2x-(y-3)=-2 ……㉠ -3x+5y=11 ……㉡ ㉠을 정리하면 2x-y=-5 ……㉢ ㉢_5+㉡을 하면 10x-5y=-25 +>≥-3x+5y=11 7x =-14 ∴∴ x=-2 x=-2를 ㉢에 대입하면 -4-y=-5 ∴∴ y=1 4(x-y)-3x=-9 -2x+5(x+y)=41 `x-4y=-9 ……㉠ [ 3x+5y=41 ……㉡ ㉠_3-㉡을 하면 ⑵ [` 3x-12y=-27 ->≥3x+5y=41 -17y=-68 ∴∴ y=4 을 괄호를 풀어 정리하면 y=4를 ㉠에 대입하면 x-16=-9 ∴∴ x=7 “;3!;x-;3%;y=;2%; ……㉠ ⑶ [ ;5@;x+;2!;y=;2!; `……㉡ ㉠의 양변에 6을 곱하면 2x-10y=15 ……㉢ ㉡의 양변에 10을 곱하면 4x+5y=5 ……㉣ ㉢_2-㉣을 하면 4x-20y=30 ->≥4x+5y=5 -25y=25 ∴∴ y=-1 y=-1을 ㉢에 대입하면 2x+10=15 2x=5 ∴∴ x=;2%; `0.3x-1.1y=-0.5 ……㉠ ⑷ [ ;6!;x-;3@;y=-;3!; ……㉡ ㉠의 양변에 10을 곱하면 3x-11y=-5 ……㉢ ㉡의 양변에 6을 곱하면 x-4y=-2 ……㉣ 48 이해쏙쏙 술술풀이 ㉢-㉣_3을 하면 3x-11y=-5 ->≥3x-12y=-6 y=1 y=1을 ㉣에 대입하면 x-4=-2 ∴∴ x=2 `0.25(x-2)+0.5(2y+3)=1 ……㉠ ⑸ [ – ;4{; y-1 2 =2 ……㉡ ㉠의 양변에 4를 곱하여 정리하면 x+4y=0 ……㉢ ㉡의 양변에 4를 곱하여 정리하면 x-2y=6 ……㉣ ㉢-㉣을 하면 6y=-6 ∴∴ y=-1 y=-1을 ㉣에 대입하면 x+2=6 ∴∴ x=4 (cid:9000) ⑴ x=-2, y=1 ⑵ x=7, y=4 (cid:9000) ⑶ x=;2%;, y=-1 ⑷ x=2, y=1 (cid:9000) ⑸ x=4, y=-1 1단계 CStep p. 111~ 115 02 ⑴ x=1, y=2 ⑵ x=7, y=10 01 23 ⑶ x=-1, y=4 ⑷ x=-26, y=-7 03 -4 06 ⑴ x=13, y=6 ⑵ x=3, y=0 ⑶ x=-1, y=3 05 ㈎ x+3 ㈏ 3 ㈐ 6 04 10 ⑷ x=2, y=-3 09 2 10 11 07 ;;¡2¡;; 11 ④ 08 ;3@; 12 ⑴ x=1, y=-1 ⑵ a=;2%;, b=-;;¡2∞;; 13 14 14 ⑴ -2 ⑵ x=-1, y=-2 15 -7 16 ⑴ x=5, y=3 ⑵ x=-;;¡8¶;;, y=-;4%; ⑶ x=;;¡4£;;, y=;4!; 17 10 18 5 19 ⑴ x=;2!;, y=;3!; ⑵ x=4, y=-2 ⑶ x=-7, y=3 20 11 22 -;2@0(; 23 x=;3@;, y=2 21 ;;¢9º;; 24 -33 25 x=;1!3^;, y=-;1!3!; 27 ④ 30 5 28 a=-6, b=-1 31 6 32 ⑤ 26 x=5, y=7 29 ① 33 2 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지49 MAC6 01 [ `3x+4y=2 ……㉠ 2x-5y=9 ……㉡ 에서 ㉠_5+㉡_4를 하면 15x+8x=10+36 23x=46 ∴∴ a=23 (cid:9000) 23 02 ⑴ [ `x+2y=5 ……㉠ x-y=-1 ……㉡ 에서 ㉠-㉡을 하면 3y=6 ∴∴ y=2 y=2를 ㉡에 대입하면 x-2=-1 ∴∴ x=1 `4x-3y=-2 ……㉠ 3x-2y=1 ……㉡ 에서 ⑵ [ ㉠_2-㉡_3을 하면 -x=-7 ∴∴ x=7 x=7을 ㉠에 대입하면 28-3y=-2 ∴∴ y=10 `7x+3y=5 ……㉠ 4x-y=-8 ……㉡ 에서 ⑶ [ ㉠+㉡_3을 하면 19x=-19 ∴∴ x=-1 x=-1을 ㉡에 대입하면 -4-y=-8 ∴∴ y=4 `2x-7y=-3 ……㉠ x-5y=9 `……㉡ 에서 ⑷ [ ㉠-㉡_2를 하면 3y=-21 ∴∴ y=-7 y=-7을 ㉡에 대입하면 x+35=9 ∴∴ x=-26 (cid:9000) ⑴ x=1, y=2 ⑵ x=7, y=10 ⑶ x=-1, y=4 ⑷ x=-26, y=-7 03 [ `x-4y=-3 ……㉠ 2x+y=3 ` ……㉡ ㉠_2-㉡을 하면 -9y=-9 ∴∴ y=1 y=1을 ㉠에 대입하면 x-4=-3 ∴∴ x=1 x=1, y=1을 ax-y+5=0에 대입하면 a-1+5=0 ∴∴ a=-4 (cid:9000) -4 04 [ `x-3y=10 ……㉠ 3x+y=2 ……㉡ 에서 ㉠을 x에 관하여 풀면 x=3y+10 x=3y+10을 ㉡에 대입하면 3(3y+10)+y=2 9y+30+y=2, 10y=-28 ∴∴ a=10 (cid:9000) 10 본문 110~112쪽 05 [ `y=x+3 `……㉠ 4x+y=18 ……㉡ 에서 ㉠을 ㉡에 대입하면 4x+x+3=18 ∴∴ x=3 x=3을 ㉠에 대입하면 y=3+3=6 ∴∴ x=3, y=6 06 ⑴ [ `x-y=7 ……㉠ x=3y-5 ……㉡ 에서 (cid:9000) ㈎ x+3 ㈏ 3 ㈐ 6 ㉡을 ㉠에 대입하면 3y-5-y=7, 2y=12 ∴∴ y=6 y=6을 ㉡에 대입하면 x=18-5=13 `2y=-x+3 ……㉠ 4x-2y=12 ……㉡ 에서 ⑵ [ ㉠을 ㉡에 대입하면 4x-(-x+3)=12, 5x=15 ∴∴ x=3 x=3을 ㉠에 대입하면 y=0 `4x+3y=5 ……㉠ 6x-y=-9 ……㉡ 에서 ⑶ [ ㉡을 y에 관하여 풀면 y=6x+9 ……㉢ ㉢을 ㉠에 대입하면 4x+3(6x+9)=5 22x=-22 ∴∴ x=-1 x=-1을 ㉢에 대입하면 y=-6+9=3 `2x+y=1 ……㉠ x-3y=11 ……㉡ 에서 ⑷ [ ㉠을 y에 관하여 풀면 y=-2x+1 ……㉢ ㉢을 ㉡에 대입하면 x-3(-2x+1)=11 7x=14 ∴∴ x=2 x=2를 ㉢에 대입하면 y=-4+1=-3 (cid:9000) ⑴ x=13, y=6 ⑵ x=3, y=0 ⑶ x=-1, y=3 ⑷ x=2, y=-3 07 x=-2, y=1을 ax+by=10에 대입하면 -2a+b=10 ……㉠ x=-2, y=1을 ax-by=-4에 대입하면 -2a-b=-4 ……㉡ ㉠-㉡을 하면 2b=14 ∴∴ b=7 b=7을 ㉠에 대입하면 -2a+7=10 ∴∴ a=-;2#; ∴∴ a+b=;;¡2¡;; (cid:9000) ;;¡2¡;; 08 20과 8의 최대공약수는 4이고, 3과 6의 최소공배수는 6이므로 주어진 연립방정식의 해는 x=4, y=6이다. … 30`% Ⅳ. 연립방정식 49 IV 연 립 방 정 식 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지50 MAC6 … 60`% … 10`% (cid:9000) ;3@; 배점 30`% 60`% 10`% (cid:9000) 2 이해쏙쏙술술풀이 x=4, y=6을 ax+by=1에 대입하면 4a+6b=1 ……㉠ 2ax-by=5에 대입하면 8a-6b=5 ……㉡ ㉠+㉡을 하면 12a=6 ∴∴ a=;2!; a=;2!;을 ㉠에 대입하면 2+6b=1 ∴∴ b=-;6!; ∴∴ a-b=;3@; 채점 기준 연립방정식의 해 구하기 a, b의 값 구하기 a-b의 값 구하기 09 x=2y이므로 `x-y=6 [ x=2y x=12, y=6을 2x-3y=4+a에 대입하면 24-18=4+a ∴∴ a=2 를 풀면 x=12, y=6 10 y=x+1이므로 x+2y=8 [` y=x+1 x=2, y=3을 4x+y=k에 대입하면 k=11 (cid:9000) 11 을 풀면 x=2, y=3 11 [ 을 풀면 x=5, y=4 `-x+2y=3 4x-3y=8 x=5, y=4를 ax+3y=7에 대입하면 5a+12=7, 5a=-5 ∴∴ a=-1 (cid:9000) ④ 12 ⑴ 두 연립방정식의 해가 같으므로 그 해는 의 해와 같다. 연립방정식 [ `4x+y=3 ……㉠ 2x-5y=7` ……㉡ ㉠-㉡_2를 하면 11y=-11 ∴∴ y=-1 y=-1을 ㉡에 대입하면 2x+5=7 2x=2 ∴∴ x=1 ⑵ x=1, y=-1을 ax-by=-5에 대입하면 a+b=-5 ……㉢ x=1, y=-1을 bx+ay=-10에 대입하면 a-b=10 ……㉣ ㉢+㉣을 하면 2a=5 ∴∴ a=;2%; 50 이해쏙쏙 술술풀이 a=;2%;를 ㉢에 대입하면 ;2%;+b=-5 ∴∴ b=-;;¡2∞;; (cid:9000) ⑴ x=1, y=-1 ⑵ a=;2%;, b=-;;¡2∞;; 13 [ `2x-7y=-1 ……㉠ 3x-y=8 ……㉡ ㉠-㉡_7을 하면 -19x=-57 ∴∴ x=3 x=3을 ㉡에 대입하면 9-y=8 ∴∴ y=1 x=3, y=1을 bx+4y=28에 대입하면 3b+4=28, 3b=24 ∴∴ b=8 x=3, y=1을 ax+2y=20에 대입하면 3a+2=20, 3a=18 ∴∴ a=6 ∴∴ a+b=14 채점 기준 연립방정식의 해 구하기 b의 값 구하기 a의 값 구하기 a+b의 값 구하기 … 40`% … 25`% … 25`% … 10`% (cid:9000) 14 배점 40`% 25`% 25`% 10`% 14 ⑴ 주어진 연립방정식에서 a와 b를 바꾸어 놓으면 [ [ 이고 `bx+ay=-3` ax+by=9 여기에 x=-2, y=-1을 대입하면 `-a-2b=-3 ……㉠ -2a-b=9 ……㉡ ㉠_2-㉡을 하면 -3b=-15 ∴∴ b=5 b=5를 ㉡에 대입하면 -2a-5=9 ∴∴ a=-7 ∴∴ a+b=-2 `-7x+5y=-3 ……㉢ 5x-7y=9 ……㉣ ㉢_5+㉣_7을 하면 -24y=48 ∴∴ y=-2 y=-2를 ㉢에 대입하면 -7x-10=-3 ∴∴ x=-1 에서 ⑵ [ (cid:9000) ⑴ -2 ⑵ x=-1, y=-2 15 ㉠에서 y의 계수를 A로 잘못 보았다고 하면 6x+Ay=3 ……㉢ x=4를 ㉡에 대입하면 -4+3y=5, 3y=9 ∴∴ y=3 x=4, y=3을 ㉢에 대입하면 24+3A=3, 3A=-21 ∴∴ A=-7 (cid:9000) -7 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지51 MAC6 16 ⑴ [ `-(x-y)+4y=10 ……㉠ 2(x+3y)-5x=3 ……㉡ ㉠을 정리하면 -x+5y=10 ……㉢ ㉡을 정리하면 x-2y=-1 ……㉣ ㉢+㉣을 하면 3y=9 ∴∴ y=3 y=3을 ㉣에 대입하면 x-6=-1 ∴∴ x=5 `x+3(x-2y)=-1 ……㉠ 2(x+4)-y=5 ……㉡ ⑵ [ ㉠을 정리하면 4x-6y=-1 ……㉢ ㉡을 정리하면 2x-y=-3 ……㉣ ㉢-㉣_2를 하면 -4y=5 ∴∴ y=-;4%; y=-;4%;를 ㉣에 대입하면 2x+;4%;=-3 ⑶ [ ∴∴ x=-;;¡8¶;; `5(x-2)-y=2(x-y) ……㉠ x-3(x+y)=-y-7 ……㉡ ㉠을 정리하면 3x+y=10 ……㉢ ㉡을 정리하면 2x+2y=7 ……㉣ ㉢_2-㉣을 하면 x=;;¡4£;; x=;;¡4£;;을 ㉢에 대입하면 ;;£4ª;;+y=10 ∴∴ y=;4!; (cid:9000) ⑴ x=5, y=3 ⑵ x=-;;¡8¶;;, y=-;4%; (cid:9000) ⑶ x=;;¡4£;;, y=;4!; 17 [ `2(2x+y)=36-y ……㉠ x-(7y-x)=-16 ……㉡ ㉠을 정리하면 4x+3y=36 ……㉢ ㉡을 정리하면 2x-7y=-16 ……㉣ ㉢-㉣_2를 하면 17y=68 ∴∴ y=4 y=4를 ㉢에 대입하면 4x+12=36 4x=24 ∴∴ x=6 a=6, b=4이므로 a+b=10 18 [ `4(2x-y)=3x+17 ……㉠ x=y+4 ……㉡ ㉠을 정리하면 5x-4y=17 ……㉢ ㉡을 ㉢에 대입하면 5(y+4)-4y=17 ∴∴ y=-3 y=-3을 ㉡에 대입하면 x=-3+4=1 x=1, y=-3을 kx-(2x+y)=6에 대입하면 k-(2-3)=6, k+1=6 ∴∴ k=5 (cid:9000) 5 본문 112~114쪽 “;3@;x+;5&;y=;5$; ……㉠ 19 ⑴ [ ` ;2!;x-;3@;y=;3¡6; ……㉡ ㉠_15를 하면 10x+21y=12 ……㉢ ㉡_36을 하면 18x-24y=1 ……㉣ ㉢_9-㉣_5를 하면 309y=103 ∴∴ y=;3!; y=;3!;을 ㉢에 대입하면 10x+7=12 ∴∴ x=;2!; `0.1x-0.3y=1 ……㉠ ⑵ [ `2x- y+2 3 =8 ……㉡ ㉠_10을 하면 x-3y=10 ……㉢ ㉡_3을 하면 6x-y=26 ……㉣ ㉢_6-㉣을 하면 -17y=34 ∴∴ y=-2 y=-2를 ㉢에 대입하면 x+6=10 ∴∴ x=4 ⑶ [ “0.2x+;5$;y=1 ……㉠ ` ;5!;(x-2y)+2=0.2(y-6) ……㉡ ㉠_5를 하면 x+4y=5 ……㉢ ㉡_5를 하면 x-2y+10=y-6 ∴∴ x-3y=-16 ……㉣ ㉢-㉣을 하면 7y=21 ∴∴ y=3 y=3을 ㉢에 대입하면 x+12=5 ∴∴ x=-7 (cid:9000) ⑴ x=;2!;, y=;3!; ⑵ x=4, y=-2 (cid:9000) ⑶ x=-7, y=3 IV 연 립 방 정 식 (cid:9000) 10 20 [ `3x-5(x-y)+15=0 x-5y 2 x+4y 3 – =-;;¡6£;; ……㉡ ……㉠ ㉠을 정리하면 -2x+5y=-15 ……㉢ ㉡_6을 하면 3(x-5y)-2(x+4y)=-13 x-23y=-13 ……㉣ ㉢+㉣_2를 하면 -41y=-41 ∴∴ y=1 y=1을 ㉣에 대입하면 x-23=-13 ∴∴ x=10 a=10, b=1이므로 a+b=11 (cid:9000) 11 ` 21 [ x-1 5 + y+3 2 0.6x-y=1.5 =;1£0; ……㉠ ……㉡ Ⅳ. 연립방정식 51 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지52 MAC6 이해쏙쏙술술풀이 ㉠_10을 하면 2(x-1)+5(y+3)=3, 2x+5y=-10 ……㉢ ㉡_10을 하면 6x-10y=15 ……㉣ ㉢_2+㉣을 하면 10x=-5 ∴∴ x=-;2!; x=-;2!;을 ㉢에 대입하면 -1+5y=-10 ∴∴ y=-;5(; x=-;2!;, y=-;5(;를 2x-ay=7에 대입하면 -1+;5(;a=7 ∴∴ a=;;¢9º;; (cid:9000) ;;¢9º;; ` 22 [ 2x-y 3 + y+1 4 =0.5 0.7(x+y)+k= 2x-3y 5 를 정리하면 [ `8x-y=3 `……㉠ 3x+13y=-10k ……㉡ y의 값이 x의 값의 2배이므로 y=2x를 ㉠에 대입하면 8x-2x=3, 6x=3 ∴∴ x=;2!;, y=1 … 70`% x=;2!;, y=1을 ㉡에 대입하면 3_;2!;+13_1=-10k ∴∴ k=-;2@0(; … 30`% (cid:9000) -;2@0(; 배점 70`% 30`% 채점 기준 연립방정식의 해 구하기 k의 값 구하기 23 [ `3x-2y=-2 ……㉠ (x+1):(y+1)=5:9 ……㉡ ㉡을 정리하면 9x-5y=-4 ……㉢ ㉠_3-㉢을 하면 -y=-2 ∴∴ y=2 y=2를 ㉠에 대입하면 3x-4=-2 25 [ `2x+y-3=5(x-1)+3y ……㉠ 2x+y-3=2+4y ㉠을 정리하면 3x+2y=2 ……㉢ ㉡을 정리하면 2x-3y=5 ……㉣ ……㉡ ㉢_3+㉣_2를 하면 13x=16 ∴∴ x=;1!3^; x=;1!3^;을 ㉣에 대입하면 ;1#3@;-3y=5 ∴∴ y=-;1!3!; (cid:9000) x=;1!3^;, y=-;1!3!; ` 26 [ x-2 3 x-2 3 = = x-y+6 4 x+y-7 5 ……㉠ ……㉡ ㉠_12를 하면 4(x-2)=3(x-y+6) x+3y=26 ……㉢ ㉡_15를 하면 5(x-2)=3(x+y-7) 2x-3y=-11 ……㉣ ㉢+㉣을 하면 3x=15 ∴∴ x=5 x=5를 ㉢에 대입하면 5+3y=26 ∴∴ y=7 (cid:9000) x=5, y=7 x-y+10 3 ` 27 [ =3x+2y ……㉠ 0.5(x-3y+1)=3x+2y ……㉡ ㉠_3을 하면 x-y+10=9x+6y 8x+7y=10 ……㉢ ㉡_2를 하면 x-3y+1=6x+4y 5x+7y=1 ……㉣ ㉢-㉣을 하면 3x=9 ∴∴ x=3 x=3을 ㉢에 대입하면 24+7y=10 ∴∴ y=-2 x=3, y=-2를 ax+3y=6에 대입하면 3a-6=6, 3a=12 ∴∴ a=4 ∴∴ x=;3@; (cid:9000) x=;3@;, y=2 (cid:9000) ④ `a-2b= 2a+5 8 24 [ ……㉠ (a+1):(b-5)=3:2 ……㉡ ㉠을 정리하면 6a-16b=5 ……㉢ ㉡을 정리하면 2a-3b=-17 ……㉣ ㉢-㉣_3을 하면 -7b=56 ∴∴ b=-8 b=-8을 ㉣에 대입하면 a=-;;¢2¡;; ∴∴ 2a-b=-33 (cid:9000) -33 28 [ `x-y=5(x+3y) ……㉠ x-y=2x-ay+3 ……㉡ ㉠을 정리하면 x=-4y ……㉢ ㉡을 정리하면 x+(1-a)y=-3 ……㉣ ㉢에 x=4, y=b를 대입하면 b=-1 ㉣에 x=4, y=-1을 대입하면 4-(1-a)=-3 3+a=-3 ∴∴ a=-6 (cid:9000) a=-6, b=-1 52 이해쏙쏙 술술풀이 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지53 MAC6 29 [ `ax-6y=2 5x+3y=b 의 해가 무수히 많으므로 =-;3^;= ;b@;에서 ;5A; ;5A; =-2 ∴∴ a=-10 -2= ;b@; ∴∴ b=-1 ∴∴ a-b=-9 30 [ `x+3y=-2 3x+(2a-1)y=-6` 의 해가 무수히 많으므로 3 2a-1 = ;3!;= 2a-1=9, 2a=10 ∴∴ a=5 -2 -6 31 [ 의 해가 무수히 많으므로 `(a-1)x+y=b 2x+y=3 a-1 2 a-1 2 =;1!;= ;3B; =1 ∴∴ b=3 ;3B; ∴∴ a+b=3+3=6 =1, a-1=2 ∴∴ a=3 채점 기준 a의 값 구하기 b의 값 구하기 a+b의 값 구하기 (cid:9000) ① … 40`% … 40`% … 20`% (cid:9000) 6 배점 40`% 40`% 20`% 32 [ `ax+8y=2 -3x+4y=b 의 해가 없으려면 – =;4*;+ ;3A; ;b@; – =2 ∴∴ a=-6 ;3A; ;4*;+ ;b@; ∴∴ b+1 33 [ , 즉 [ `5y-x=2 ax-10y=2 -1 a 5 +;2@; -10 5a=10 ∴∴ a=2 = `-x+5y=2 ax-10y=2` 의 해가 없으려면 본문 114~116쪽 p. 116~ 119 2단계 BStep 01 ② 05 ⑤ 02 ④ 03 2개 04 2 06 ⑴ x=-;1(5$;, y=-;;¡5¢;; ⑵ x=5, y=-1 08 x=3, y=6, a=11 11 -5 14 ⑴ x=3, y=1 ⑵ a=2, b=-3 16 ④ 17 ⑴ x=1, y=-2 12 9 07 -;2¡1; 09 9 13 a=24, b=-3 10 -3 15 -12 ⑵ x=-;1¡2;, y=;1∞2; 18 23 19 25 (cid:9000) 5 15x+6y=20 20 ⑴ [ 2x+6y=7 ⑵ x=1, y=;6%; 21 x=3, y=1 22 ;;¡4¶;; 23 x=4, y=1 24 x=3, y=-11 25 x=-3, y=-2 26 a=-4, b=-;2&; 27 49:100:9 01 ax+by+c=0(단, a, b, c는 상수, a+0, b+0) ax2-3by+5=2×2+5(x-y) ax2-3by+5=2×2+5x-5y (a-2)x2-5x+(5-3b)y+5=0 a-2=0, 5-3b+0 ∴∴ a=2, b+;3%; (cid:9000) ② 02 x 또는 y에 1, 2, 3, …을 차례로 대입한다. ① (1, 2) ② (1, 2), (3, 3), (5, 4), … ③ (1, 3), (2, 2), (3, 1) IV 연 립 방 정 식 (cid:9000) ⑤ ④ x=1, 2, 3, …을 대입하면 y=;5^;, ;5$;, ;5@;, …이므 로 x, y의 값이 자연수인 해는 없다. ⑤ (2, 1), (5, 3), (8, 5), … (cid:9000) ④ (cid:9000) 2 03 주어진 일차방정식의 해를 대입하여 자연수 a, b를 구한 다. x=-2, y=1을 2ax-by=-9에 대입하면 -4a-b=-9 ∴∴ 4a+b=9 a, b는 자연수이므로 4a+b=9를 만족시키는 순서쌍 (a, b)는 (1, 5), (2, 1)의 2개이다. (cid:9000) 2개 04 주어진 해를 연립방정식에 각각 대입하여 a, b의 값을 구 한다. x=-2, y=b를 x-2y=-6에 대입하면 -2-2b=-6 ∴∴ b=2 Ⅳ. 연립방정식 53 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지54 MAC6 이해쏙쏙술술풀이 x=-2, y=2를 ax-3y=-2에 대입하면 -2a-6=-2 ∴∴ a=-2 ∴∴ a+2b=2 (cid:9000) 2 ∴∴ ;aB; ={-;8!;}÷;;™8¡;;=-;8!;_;2•1;=-;2¡1; (cid:9000) -;2¡1; 05 소거하려는 미지수의 계수의 절댓값을 같게 한 후 두 식을 08 y의 값이 x의 값의 2배이므로 y=2x이다. 더하거나 뺀다. ㉠_2+㉡_7을 하면 6x-14y=-4 +>≥135x+14y=91 141x =87 (cid:9000) ⑤ 06 친다. ⑴ 양변에 분모의 최소공배수를 곱하여 계수를 정수로 고 ⑵ 비례식에서 (내항의 곱)=(외항의 곱)임을 이용하여 비례식을 일차방정식으로 고친다. -`;2}; “;4{; x+2 2 =-;6!; y-3 3 – ⑴ [ ` ……㉠ =-;5!; ……㉡ ㉠_12를 하면 3x-6y=-2 ……㉢ ㉡_30을 하면 15(x+2)-10(y-3)=-6 15x-10y=-66 ……㉣ ㉢_5-㉣을 하면 -20y=56 ∴∴ y=-;;¡5¢;; y=-;;¡5¢;;를 ㉢에 대입하면 3x-6_{-;;¡5¢;;}=-2 , 3x=-;;ª5¢;; ⑵ [ ∴∴ x=-;1(5$; `(x+2y):(x-y+3)=1:3 ……㉠ x-3y=8 ㉠을 정리하면 2x+7y=3 ……㉢ ㉡_2-㉢을 하면 -13y=13 ∴∴ y=-1 y=-1을 ㉡에 대입하면 x=5 ……㉡ (cid:9000) ⑴ x=-;1(5$;, y=-;;¡5¢;; ⑵ x=5, y=-1 07 주어진 해를 대입하여 a, b에 관한 연립방정식을 푼다. x=3, y=-1을 ax+by=8에 대입하면 3a-b=8 ……㉠ x=3, y=-1을 bx+ay=-3에 대입하면 -a+3b=-3 ……㉡ ㉠_3+㉡을 하면 8a=21 ∴∴ a=;;™8¡;; a=;;™8¡;;을 ㉡에 대입하면 b=-;8!; 54 이해쏙쏙 술술풀이 y=2x이므로 주어진 연립방정식에 대입하면 `5x=2a-7 ……㉠ [ 7x=a+10 ……㉡ ㉠-㉡_2를 하면 -9x=-27 ∴∴ x=3 x=3을 y=2x에 대입하면 y=6 x=3을 ㉠에 대입하면 2a-7=15 ∴∴ a=11 (cid:9000) x=3, y=6, a=11 09 주어진 연립방정식의 해가 4x-3y=11을 만족시키 므로 `3x+2y=4 ……㉠ [ 4x-3y=11 ……㉡ ㉠_3+㉡_2를 하면 17x=34 ∴∴ x=2 x=2를 ㉠에 대입하면 6+2y=4 ∴∴ y=-1 x=2, y=-1을 ax+4y=a+5에 대입하면 2a-4=a+5 ∴∴ a=9 채점 기준 연립방정식의 해 구하기 a의 값 구하기 … 60`% … 40`% (cid:9000) 9 배점 60`% 40`% 10 x=m, y=n을 대입하여 연립방정식을 푼다. 주어진 연립방정식의 해가 x=m, y=n이므로 `2m-n=7 `……㉠ [ -m+2n=1 ……㉡ ㉠+㉡_2를 하면 3n=9 ∴∴ n=3 n=3을 ㉡에 대입하면 m=5 x=5, y=3을 -ax+4y+9a=0에 대입하면 -5a+12+9a=0 ∴∴ a=-3 (cid:9000) -3 11 잘못 본 것을 미지수로 놓고 푼다. x-2y=0의 0을 a로 잘못 보았다고 하면 3x-y=5 ……㉠ [` x-2y=a ……㉡ x=3을 ㉠에 대입하면 9-y=5 ∴∴ y=4 x=3, y=4를 ㉡에 대입하면 a=3-2_4=-5 따라서 0을 -5로 잘못 보고 풀었다. (cid:9000) -5 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지55 MAC6 12 계수가 정수가 되도록 적당한 수를 양변에 곱한다. `0.1(2x-3y)=1.6 ……㉠ [ `;6%;(x-4y)-y=;2!; ……㉡ ㉠_10을 하면 2x-3y=16 ……㉢ ㉡_6을 하면 5(x-4y)-6y=3 5x-26y=3 ……㉣ ㉢_5-㉣_2을 하면 37y=74 ∴∴ y=2 y=2를 ㉢에 대입하면 2x-6=16 ∴∴ x=11 a=11, b=2이므로 a-b=11-2=9 (cid:9000) 9 13 두 연립방정식의 해가 같으므로 `3x-2y=-5 ……㉠ [ x+3y=-9 `……㉡ ㉠-㉡_3을 하면 -11y=22 ∴∴ y=-2 y=-2를 ㉡에 대입하면 x-6=-9 ∴∴ x=-3 x=-3, y=-2를 5x+by=a(2y-x)+15, a(x-2y)=5y+bx+25에 대입하면 `a-2b=30 ……㉢ [ a+3b=15 ……㉣ ㉢-㉣을 하면 -5b=15 ∴∴ b=-3 b=-3을 ㉢에 대입하면 a+6=30 ∴∴ a=24 채점 기준 연립방정식의 해 구하기 a, b의 값 구하기 … 50`% (cid:9000) a=24, b=-3 배점 50`% 50`% x=x1+1, y=y1+1이다. ⑴ ㈏의 해를 x=x1, y=y1이라 하면 `3(x1+1)-(y1+1)=10 ……㉠ [ 2×1+3y1=9 ……㉡ ㉠을 정리하면 3×1-y1=8 ……㉢ ㉡+㉢_3을 하면 11×1=33 ∴∴ x1=3 x1=3을 ㉢에 대입하면 y1=1 따라서 ㈏의 해는 x=3, y=1이다. 리하면 `6a+b=9 ……㉣ [ b=-2a+1 ……㉤ 본문 116~118쪽 (cid:9000) ⑴ x=3, y=1 ⑵ a=2, b=-3 15 순환소수를 분수로 고쳐 연립방정식을 푼다. ㉤을 ㉣에 대입하면 6a+(-2a+1)=9 4a=8 ∴∴ a=2 a=2를 ㉤에 대입하면 b=-3 `0.H3x-0.H1y=1.H4 ……㉠ [ 0.H2x+0.H3y=-0.H6 ……㉡ ㉠에서 ;9#;x-;9!;y=;;¡9£;; ∴∴ 3x-y=13 ……㉢ ㉡에서 ;9@;x+;9#;y=-;9^; ∴∴ 2x+3y=-6 ……㉣ ㉢_3+㉣을 하면 11x=33 ∴∴ x=3 x=3을 ㉢에 대입하면 y=-4 a=3, b=-4이므로 ab=-12 … 50`% (cid:9000) -12 16 두 일차방정식의 x, y의 계수는 같고, 상수항이 다르면 연 립방정식의 해는 없다. ①, ② 해가 무수히 많다. ④ [ 을 정리하면 `x-y=8+y -3+2x=4y+1 `x-2y=8 [ x-2y=2 x, y의 계수는 같고 상수항만 다르므로 해가 없다. 에서 ③, ⑤ 한 쌍의 해가 존재한다. (cid:9000) ④ IV 연 립 방 정 식 ⑴ ;[!; =A, ;]!; =B라 하면 `2A-B=;2%; ……㉠ [ 3A-;2!;B=;;¡4£;; ……㉡ ㉠-㉡_2를 하면 -4A=-4 ∴∴ A=1 A=1을 ㉠에 대입하면 2-B=;2%; 따라서 A= =1에서 x=1, ;[!; B= ;]!; =-;2!;에서 y=-2이다. Ⅳ. 연립방정식 55 14 ㈏의 해를 x=x1, y=y1이라 하면 ㈎의 해는 17 분모에 문자가 있으므로 치환하여 연립방정식을 푼다. ⑵ ㈎에 x=4, y=2, ㈏에 x=3, y=1을 대입하여 정 ∴∴ B=-;2!; (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지56 MAC6 이해쏙쏙술술풀이 ⑵ =A, 1 x+y =B라 하면 1 x-y `A+2B=4 ……㉠ [ A+B=1 `……㉡ ㉠-㉡을 하면 B=3 B=3을 ㉡에 대입하면 A=-2 1 x-y 따라서 A= B= 1 x+y =3에서 x+y=;3!;이다. `x-y=-;2!; ……㉢ [ x+y=;3!; ……㉣ ㉢+㉣을 하면 2x=-;6!; ∴∴ x=-;1¡2; x=-;1¡2;을 ㉢에 대입하면 y=;1∞2; (cid:9000) ⑴ x=1, y=-2 ⑵ x=-;1¡2;, y=;1∞2; ㉠-㉡을 하면 13x=13 ∴∴ x=1 x=1을 ㉡에 대입하면 2+6y=7 ∴∴ y=;6%; ⑴ 구하기 ⑵ 구하기 (cid:9000) ⑴ [ 15x+6y=20 2x+6y=7 ⑵ x=1, y=;6%; … 50`% 배점 50`% 50`% 21 두 일차방정식의 x, y의 계수가 같고, 상수항도 같으면 연 [ 립방정식의 해가 무수히 많다. `(a+1)x+2y=6` 3x+y=b a+1 3 =;1@;= ;b^;에서 a=5, b=3 의 해가 무수히 많으므로 따라서 5x+3y=18의 자연수인 해는 x=3, y=1이 (cid:9000) x=3, y=1 다. =-2에서 x-y=-;2!;이고, 채점 기준 18 x+y=A, xy=B로 치환한다. 22 연립방정식을 풀어 x, y를 k를 사용하여 나타낸다. x+y=A, xy=B라 하면 A+2B=7 ……㉠ [` 2A-5B=5 ……㉡ ㉠_2-㉡을 하면 9B=9 ∴∴ B=1 B=1을 ㉠에 대입하면 A+2=7 ∴∴ A=5 ∴∴ x2+y2=(x+y)2-2xy=25-2=23 에서 `2x-3y+k=0 `……㉠` 3x-2y+2k=0 ……㉡ [ 에서 ㉠_3-㉡_2를 하면 -5y-k=0 ∴∴ y=- ;5K; y=- ;5K;를 ㉠에 대입하면 2x+ +k=0 3k 5 (cid:9000) 23 2x=-;5*;k ∴∴ x=-;5$;k 19 x, y의 값을 대입하여 a, b에 관한 연립방정식을 만든다. x=1, y=-1을 대입하면 a+b=2 ……㉠ x=2, y=3을 대입하면 4a+9b=13 ……㉡ ㉠_4-㉡을 하면 -5b=-5 ∴∴ b=1 b=1을 ㉠에 대입하면 a=1 ax2+by2=x2+y2이므로 x=-3, y=-4를 x2+y2 에 대입하면 9+16=25이다. (cid:9000) 25 20 ⑴ 가로, 세로, 대각선의 식의 합은 5+2+(-1)=6 으로 모두 같으므로 2x+;5^;y+2+x=6을 정리하면 15x+6y=20 -1-x+2(x+3y)+x=6을 정리하면 2x+6y=7 ∴∴ ;[}; + ;]{; = =;4!;+4=;;¡4¶;; (cid:9000) ;;¡4¶;; – ;5K; -;5$;k + -;5$;k – ;5K; 23 ax ay =ax-y(단, x>y)임을 이용한다. =32x-3y=35이므로 = = 22x 2x+y 32(x+y) 35y =2x-y=23이므로 4x 2x+y x-y=3 ……㉠ 9x+y 35y 2x-3y=5 ……㉡ ㉠_2-㉡을 하면 y=1 y=1을 ㉠에 대입하면 x-1=3 ∴∴ x=4 (cid:9000) x=4, y=1 … 50`% 24 x:y:z=a:b:c -x+6 3 = x-y 14 = = = ;b}; ;cZ; 에서 ˙k ;a{; 4x+y 1 ∴∴ [ `15x+6y=20 2x+6y=7 ⑵ [ `15x+6y=20 ……㉠ 2x+6y=7 ……㉡ 56 이해쏙쏙 술술풀이 (010~093)13원리2-1 정답.ps 2018.10.22 4:3 PM 페이지57 MAC6 ` [ -x+6 3 x-y 14 =4x+y ……㉠ =4x+y ……㉡ ㉠_3을 하면 -x+6=12x+3y 13x+3y=6 ……㉢ ㉡_14를 하면 x-y=56x+14y 11x+3y=0 ……㉣ ㉢-㉣을 하면 2x=6 ∴∴ x=3 x=3을 ㉣에 대입하면 33+3y=0 ∴∴ y=-11 25 x>y, x y일 때 `x=x-y-1 [ y=x+y+2 ∴∴ x=-2, y=-1 ˙k ¤ x
So you have finished reading the 원리 해설 중학 수학 2 2 답지 topic article, if you find this article useful, please share it. Thank you very much. See more: 원리해설 중학수학 2-1 답지, 원리해설 3-2 답지, 원리해설 3-1 답지, 원리해설 1-1 답지